scholarly journals Entropy-Enthalpy Compensations Fold Proteins in Precise Ways

2021 ◽  
Vol 22 (17) ◽  
pp. 9653
Author(s):  
Jiacheng Li ◽  
Chengyu Hou ◽  
Xiaoliang Ma ◽  
Shuai Guo ◽  
Hongchi Zhang ◽  
...  

Exploring the protein-folding problem has been a longstanding challenge in molecular biology and biophysics. Intramolecular hydrogen (H)-bonds play an extremely important role in stabilizing protein structures. To form these intramolecular H-bonds, nascent unfolded polypeptide chains need to escape from hydrogen bonding with surrounding polar water molecules under the solution conditions that require entropy-enthalpy compensations, according to the Gibbs free energy equation and the change in enthalpy. Here, by analyzing the spatial layout of the side-chains of amino acid residues in experimentally determined protein structures, we reveal a protein-folding mechanism based on the entropy-enthalpy compensations that initially driven by laterally hydrophobic collapse among the side-chains of adjacent residues in the sequences of unfolded protein chains. This hydrophobic collapse promotes the formation of the H-bonds within the polypeptide backbone structures through the entropy-enthalpy compensation mechanism, enabling secondary structures and tertiary structures to fold reproducibly following explicit physical folding codes and forces. The temperature dependence of protein folding is thus attributed to the environment dependence of the conformational Gibbs free energy equation. The folding codes and forces in the amino acid sequence that dictate the formation of β-strands and α-helices can be deciphered with great accuracy through evaluation of the hydrophobic interactions among neighboring side-chains of an unfolded polypeptide from a β-strand-like thermodynamic metastable state. The folding of protein quaternary structures is found to be guided by the entropy-enthalpy compensations in between the docking sites of protein subunits according to the Gibbs free energy equation that is verified by bioinformatics analyses of a dozen structures of dimers. Protein folding is therefore guided by multistage entropy-enthalpy compensations of the system of polypeptide chains and water molecules under the solution conditions.

1966 ◽  
Vol 70 (4) ◽  
pp. 998-1004 ◽  
Author(s):  
George Némethy ◽  
S. J. Leach ◽  
Harold A. Scheraga

2008 ◽  
Vol 69 (8) ◽  
pp. 1912-1922 ◽  
Author(s):  
Eli Brosh ◽  
Roni Z. Shneck ◽  
Guy Makov

2021 ◽  
Vol 12 ◽  
Author(s):  
Ruifang Li ◽  
Hong Li ◽  
Xue Feng ◽  
Ruifeng Zhao ◽  
Yongxia Cheng

Many works have reported that protein folding rates are influenced by the characteristics of amino acid sequences and protein structures. However, few reports on the problem of whether the corresponding mRNA sequences are related to the protein folding rates can be found. An mRNA sequence is regarded as a kind of genetic language, and its vocabulary and phraseology must provide influential information regarding the protein folding rate. In the present work, linear regressions on the parameters of the vocabulary and phraseology of mRNA sequences and the corresponding protein folding rates were analyzed. The results indicated that D2 (the adjacent base-related information redundancy) values and the GC content values of the corresponding mRNA sequences exhibit significant negative relations with the protein folding rates, but D1 (the single base information redundancy) values exhibit significant positive relations with the protein folding rates. In addition, the results show that the relationships between the parameters of the genetic language and the corresponding protein folding rates are obviously different for different protein groups. Some useful parameters that are related to protein folding rates were found. The results indicate that when predicting protein folding rates, the information from protein structures and their amino acid sequences is insufficient, and some information for regulating the protein folding rates must be derived from the mRNA sequences.


2014 ◽  
Vol 3 (3) ◽  
pp. 278-285
Author(s):  
Yi Fang

The fundamental physical law of protein folding is the second law of thermodynamics. The key to solve proteinfolding problem is to derive an analytic formula of the Gibbs free energy. It has been overdue for too long. Let U be a monomeric globular protein whose M atoms 1 M a are classified into hydrophobicity classes H H , ,H 1H 2.


Author(s):  
Jonathan Barnes ◽  
Craig Miller ◽  
F. Marty Ytreberg

When two or more amino acid mutations occur in protein systems, they can interact in a non-additive fashion termed epistasis. One way to quantify epistasis between mutation pairs in protein systems is by using free energy differences: ϵ = G1,2 - (G1 + G2) where G refers to the change in the Gibbs free energy, subscripts 1 and 2 refer to single mutations in arbitrary order and 1,2 refers to the double mutant. In this study, we explore possible biophysical mechanisms that drive pairwise epistasis in both protein-protein binding affinity and protein folding stability. Using the largest available datasets containing experimental protein structures and free energy data, we derived statistical models for both binding and folding epistasis (ϵ) with similar explanatory power (R2) of 0.299 and 0.258, respectively. These models contain terms and interactions that are consistent with intuition. For example, increasing the Cartesian separation between mutation sites leads to a decrease in observed epistasis for both folding and binding. Our results provide insight into factors that contribute to pairwise epistasis in protein systems and their importance in explaining epistasis. However, the low explanatory power indicates that more study is needed to fully understand this phenomenon.


Sign in / Sign up

Export Citation Format

Share Document