scholarly journals Angiogenesis and Anti-Angiogenic Treatment in Prostate Cancer: Mechanisms of Action and Molecular Targets

2021 ◽  
Vol 22 (18) ◽  
pp. 9926
Author(s):  
Evangelia Ioannidou ◽  
Michele Moschetta ◽  
Sidrah Shah ◽  
Jack Steven Parker ◽  
Mehmet Akif Ozturk ◽  
...  

Prostate cancer (PC) is the most common cancer in men and the second leading cause of cancer-related death worldwide. Many therapeutic advances over the last two decades have led to an improvement in the survival of patients with metastatic PC, yet the majority of these patients still succumb to their disease. Antiagiogenic therapies have shown substantial benefits for many types of cancer but only a marginal benefit for PC. Ongoing clinical trials investigate antiangiogenic monotherapies or combination therapies. Despite the important role of angiogenesis in PC, clinical trials in refractory castration-resistant PC (CRPC) have demonstrated increased toxicity with no clinical benefit. A better understanding of the mechanism of angiogenesis may help to understand the failure of trials, possibly leading to the development of new targeted anti-angiogenic therapies in PC. These could include the identification of specific subsets of patients who might benefit from these therapeutic strategies. This paper provides a comprehensive review of the pathways involved in the angiogenesis, the chemotherapeutic agents with antiangiogenic activity, the available studies on anti-angiogenic agents and the potential mechanisms of resistance.

2016 ◽  
Vol 10s1 ◽  
pp. CMO.S34535 ◽  
Author(s):  
Vipin Lohiya ◽  
Jeanny B. Aragon-Ching ◽  
Guru Sonpavde

Chemotherapy using the taxanes, docetaxel and cabazitaxel, remains an important therapeutic option in metastatic castration-resistant prostate cancer (CRPC). However, despite the survival benefits afforded by these agents, the survival increments are modest and resistance occurs universally. Efforts to overcome resistance to docetaxel by combining with biologic agents have heretofore been unsuccessful. Indeed, resistance to these taxanes is also associated with cross-resistance to the antiandrogen drugs, abiraterone and enzalutamide. Here, we discuss the various mechanisms of resistance to chemotherapy in metastatic CRPC and the potential role of emerging regimens and agents in varying clinical phases of development.


Cells ◽  
2019 ◽  
Vol 8 (10) ◽  
pp. 1115 ◽  
Author(s):  
Joshi ◽  
Stoykova ◽  
Salzmann-Sullivan ◽  
Dzieciatkowska ◽  
Liebman ◽  
...  

Prostate cancer (PCa) is the most common cancer in men, and the global burden of the disease is rising. The majority of PCa deaths are due to metastasis that are highly resistant to current hormonal treatments; this state is called castration-resistant prostate cancer (CRPC). In this study, we focused on the role of the lipid catabolism enzyme CPT1A in supporting CRPC growth in an androgen-dependent manner. We found that androgen withdrawal promoted the growth of CPT1A over-expressing (OE) tumors while it decreased the growth of CPT1A under-expressing (KD) tumors, increasing their sensitivity to enzalutamide. Mechanistically, we found that CPT1A-OE cells burned more lipid and showed increased histone acetylation changes that were partially reversed with a p300 specific inhibitor. Conversely, CPT1A-KD cells showed less histone acetylation when grown in androgen-deprived conditions. Our results suggest that CPT1A supports CRPC by supplying acetyl groups for histone acetylation, promoting growth and antiandrogen resistance.


2019 ◽  
Author(s):  
Mitchell G Lawrence ◽  
Laura H Porter ◽  
Daisuke Obinata ◽  
Shahneen Sandhu ◽  
Luke A Selth ◽  
...  

2020 ◽  
Vol 21 (15) ◽  
pp. 1558-1565
Author(s):  
Matteo Santoni ◽  
Francesco Massari ◽  
Liang Cheng ◽  
Alessia Cimadamore ◽  
Marina Scarpelli ◽  
...  

The carcinogenesis of prostate cancer (PCa) results from a complex series of events. Chronic inflammation and infections are crucial in this context. Infiltrating M2 type macrophages, as well as neutrophils and T lymphocytes, contribute to PCa development, progression and response to therapy. The preliminary findings on the efficacy of immunotherapy in patients with PCa were not encouraging. However, a series of studies investigating anti-PD-L1 agents such as Atezolizumab, Avelumab and Durvalumab used alone or in combination with other immunotherapies, chemotherapy or locoregional approaches are in course in this tumor. In this review, we illustrate the role of immune cells and PD-L1 expression during PCa carcinogenesis and progression, with a focus on ongoing clinical trials on anti-PD-L1 agents in this context.


2019 ◽  
Vol 19 (5) ◽  
pp. 368-381 ◽  
Author(s):  
Linh N.K. Tran ◽  
Ganessan Kichenadasse ◽  
Pamela J. Sykes

Prostate cancer (PCa) is the most frequent cancer in men. The evolution from local PCa to castration-resistant PCa, an end-stage of disease, is often associated with changes in genes such as p53, androgen receptor, PTEN, and ETS gene fusion products. Evidence is accumulating that repurposing of metformin (MET) and valproic acid (VPA) either when used alone, or in combination, with another therapy, could potentially play a role in slowing down PCa progression. This review provides an overview of the application of MET and VPA, both alone and in combination with other drugs for PCa treatment, correlates the responses to these drugs with common molecular changes in PCa, and then describes the potential for combined MET and VPA as a systemic therapy for prostate cancer, based on potential interacting mechanisms.


2018 ◽  
Vol 18 (9) ◽  
pp. 869-876
Author(s):  
Samanta Salvi ◽  
Vincenza Conteduca ◽  
Cristian Lolli ◽  
Sara Testoni ◽  
Valentina Casadio ◽  
...  

Background: Adaptive upregulation of Androgen Receptor (AR) is the most common event involved in the progression from hormone sensitive to Castration-Resistant Prostate Cancer (CRPC). AR signaling remains the main target of new AR signalling-directed therapies such as abiraterone and enzalutamide in CRPC patients. Objective: In this review, we discuss general mechanisms of resistance to AR-targeted therapies, with a focus on the role of AR Copy Number (CN). We reported methods and clinical applications of AR CN evaluation in tissue and liquid biopsy, thus to have a complete information regarding its role as predictive and prognostic biomarker. Conclusion: Outcomes of CRPC patients are reported to be highly variable as the consequence of tumor heterogeneity. AR CN could contribute to patient selection and tumor monitoring in CRPC treated with new anti-cancer treatment as abiraterone and enzalutamide. Further studies to investigate AR CN effect to these agents and its potential combination with other prognostic or predictive clinical factors are necessary in the context of harmonized clinical trial design.


2019 ◽  
Vol 20 (9) ◽  
pp. 2066 ◽  
Author(s):  
Namrata Khurana ◽  
Suresh C. Sikka

Androgen receptor (AR) signaling plays a key role not only in the initiation of prostate cancer (PCa) but also in its transition to aggressive and invasive castration-resistant prostate cancer (CRPC). However, the crosstalk of AR with other signaling pathways contributes significantly to the emergence and growth of CRPC. Wnt/β-catenin signaling facilitates ductal morphogenesis in fetal prostate and its anomalous expression has been linked with PCa. β-catenin has also been reported to form complex with AR and thus augment AR signaling in PCa. The transcription factor SOX9 has been shown to be the driving force of aggressive and invasive PCa cells and regulate AR expression in PCa cells. Furthermore, SOX9 has also been shown to propel PCa by the reactivation of Wnt/β-catenin signaling. In this review, we discuss the critical role of SOX9/AR/Wnt/β-catenin signaling axis in the development and progression of CRPC. The phytochemicals like sulforaphane and curcumin that can concurrently target SOX9, AR and Wnt/β-catenin signaling pathways in PCa may thus be beneficial in the chemoprevention of PCa.


Cancers ◽  
2021 ◽  
Vol 13 (16) ◽  
pp. 3959
Author(s):  
Oluwaseun Adebayo Bamodu ◽  
Yuan-Hung Wang ◽  
Chen-Hsun Ho ◽  
Su-Wei Hu ◽  
Chia-Da Lin ◽  
...  

Background: prostate cancer (PCa) is a principal cause of cancer-related morbidity and mortality. Castration resistance and metastasis are clinical challenges and continue to impede therapeutic success, despite diagnostic and therapeutic advances. There are reports of the oncogenic activity of genetic suppressor element (GSE)1 in breast and gastric cancers; however, its role in therapy resistance, metastasis, and susceptibility to disease recurrence in PCa patients remains unclear. Objective: this study investigated the role of aberrantly expressed GSE1 in the metastasis, therapy resistance, relapse, and poor prognosis of advanced PCa. Methods: we used a large cohort of multi-omics data and in vitro, ex vivo, and in vivo assays to investigate the potential effect of altered GSE1 expression on advanced/castration-resistant PCa (CRPC) treatment responses, disease progression, and prognosis. Results: using a multi-cohort approach, we showed that GSE1 is upregulated in PCa, while tumor-associated calcium signal transducer 2 (TACSTD2) is downregulated. Moreover, the direct, but inverse, correlation interaction between GSE1 and TACSTD2 drives metastatic disease, castration resistance, and disease progression and modulates the clinical and immune statuses of patients with PCa. Patients with GSE1highTACSTD2low expression are more prone to recurrence and disease-specific death than their GSE1lowTACSTD2high counterparts. Interestingly, we found that the GSE1–TACSTD2 expression profile is associated with the therapy responses and clinical outcomes in patients with PCa, especially those with metastatic/recurrent disease. Furthermore, we demonstrate that the shRNA-mediated targeting of GSE1 (shGSE1) significantly inhibits cell proliferation and attenuates cell migration and tumorsphere formation in metastatic PC3 and DU145 cell lines, with an associated suppression of VIM, SNAI2, and BCL2 and the concomitant upregulation of TACSTD2 and BAX. Moreover, shGSE1 enhances sensitivity to the antiandrogens abiraterone and enzalutamide in vitro and in vivo. Conclusion: these data provide preclinical evidence of the oncogenic role of dysregulated GSE1–TACSTD2 signaling and show that the molecular or pharmacological targeting of GSE1 is a workable therapeutic strategy for inhibiting androgen-driven oncogenic signals, re-sensitizing CRPC to treatment, and repressing the metastatic/recurrent phenotypes of patients with PCa.


Sign in / Sign up

Export Citation Format

Share Document