scholarly journals Utilizing an Amino Acid Scaffold to Construct Heteroditopic Receptors Capable of Interacting with Salts under Interfacial Conditions

2021 ◽  
Vol 22 (19) ◽  
pp. 10754
Author(s):  
Damian Jagleniec ◽  
Natalia Walczak ◽  
Łukasz Dobrzycki ◽  
Jan Romański

A 4-nitro-L-phenylalanine scaffold was used to construct effective ion pair receptors capable of binding anions in an enhanced manner with the assistance of alkali metal cations. A benzocrown ether was linked to a receptor platform via the amide function so as to support the squaramide function in anion binding and to allow all three NHs to act simultaneously. The binding properties of the receptors were determined using UV-vis, 1H NMR, 2D NMR, and DOSY spectroscopy in MeCN and in the solid state by X-ray measurements. Ion pair receptor 2 was found to interact with the most strongly with salts, and the removal of its key structural elements was shown to hinder the receptor action. The amide proton was recognized to switch from having involvement in an intramolecular hydrogen bond to interacting with anions upon complexation. Apart from carboxylates, which promote deprotonation, and other monovalent salts creating 1:1 complexes with the receptor, more complex equilibria were established upon the complexation of 2 with sulfates. Receptor 2 was shown to be capable of the extraction of ion pairs from the aqueous to organic phase and of the cation-enhanced transport chloride and sulfate anions across a bulk chloroform membrane. These features may open the door for its use in regulating ion concertation under interfacial conditions and acting as a potential drug to treat channelopathies.

Molecules ◽  
2019 ◽  
Vol 24 (16) ◽  
pp. 2990 ◽  
Author(s):  
Damian Jagleniec ◽  
Krzysztof Ziach ◽  
Kajetan Dąbrowa ◽  
Jan Romański

A series of ditopic ion pair receptors equipped with 4-nitrophenylurea and 1-aza-18-crown-6-ether linked by ortho-(1), meta-(2), and para-(3) substituted benzoic acid were readily synthesized in three steps from commercially available materials. The binding properties of these regioisomeric receptors were determined using UV-vis and 1H NMR spectroscopy in MeCN and in the solid state by single-crystal X-ray diffraction crystallography. The solution studies revealed that, apart from carboxylates, all the anions tested formed stronger complexes in the presence of sodium cations. Receptors 2 and 3 were found to interact with ion pairs with remarkably higher affinity than ortho-substituted 1. 1H NMR titration experiments showed that both urea NH protons interacted with anions with comparable strength in the case of receptors 2 and 3, but only one of the NHs was effective in anion binding in the case of receptor 1. X-ray analysis of the crystal structure of receptor 1 and 1·NaPF6 complex showed that binding was hampered due to the formation of an intramolecular hydrogen bond. Analysis of the crystal structures of 2·NaBr and 3·NaBr complexes revealed that proper mutual orientation of binding domains was responsible for the improved binding of the sodium salts.


2018 ◽  
Author(s):  
David Ascough ◽  
Fernanda Duarte ◽  
Robert Paton

The base-catalyzed rearrangement of arylindenols is a rare example of a suprafacial [1,3]-hydrogen atom transfer. The mechanism has been proposed to proceed via sequential [1,5]-sigmatropic shifts, which occur in a selective sense and avoid an achiral intermediate. A computational analysis using quantum chemistry casts serious doubt on these suggestions: these pathways have enormous activation barriers and in constrast to what is observed experimentally, they overwhelmingly favor a racemic product. Instead we propose that a suprafacial [1,3]-prototopic shift occurs in a two-step deprotonation/reprotonation sequence. This mechanism is favored by 15 kcal mol<sup>-1</sup> over that previously proposed. Most importantly, this is also consistent with stereospecificity since reprotonation occurs rapidly on the same p-face. We have used explicitly-solvated molecular dynamics studies to study the persistence and condensed-phase dynamics of the intermediate ion-pair formed in this reaction. Chirality transfer is the result of a particularly resilient contact ion-pair, held together by electrostatic attraction and a critical NH···p interaction which ensures that this species has an appreciable lifetime even in polar solvents such as DMSO and MeOH.


Marine Drugs ◽  
2020 ◽  
Vol 19 (1) ◽  
pp. 9
Author(s):  
Ya-Ping Liu ◽  
Sheng-Tao Fang ◽  
Zhen-Zhen Shi ◽  
Bin-Gui Wang ◽  
Xiao-Nian Li ◽  
...  

Three new phenylhydrazones, penoxahydrazones A–C (compounds 1–3), and two new quinazolines, penoxazolones A (compound 4) and B (compound 5), with unique linkages were isolated from the fungus Penicillium oxalicum obtained from the deep sea cold seep. Their structures and relative configurations were assigned by analysis of 1D/2D NMR and mass spectroscopic data, and the absolute configurations of 1, 4, and 5 were established on the basis of X-ray crystallography or ECD calculations. Compound 1 represents the first natural phenylhydrazone-bearing steroid, while compounds 2 and 3 are rarely occurring phenylhydrazone tautomers. Compounds 4 and 5 are enantiomers that feature quinazoline and cinnamic acid units. Some isolates exhibited inhibition of several marine phytoplankton species and marine-derived bacteria.


Marine Drugs ◽  
2021 ◽  
Vol 19 (6) ◽  
pp. 305
Author(s):  
Guangyuan Luo ◽  
Li Zheng ◽  
Qilin Wu ◽  
Senhua Chen ◽  
Jing Li ◽  
...  

Six new fusarin derivatives, fusarins G–L (1–6), together with five known compounds (5–11) were isolated from the marine-derived fungus Fusarium solani 7227. The structures of the new compounds were elucidated by means of comprehensive spectroscopic methods (1D and 2D NMR, HRESIMS, ECD, and ORC) and X-ray crystallography. Compounds 5–11 exhibited potent anti-inflammatory activity by inhibiting the production of NO in RAW264.7 cells activated by lipopolysaccharide, with IC50 values ranging from 3.6 to 32.2 μM. The structure–activity relationships of the fusarins are discussed herein.


Molecules ◽  
2021 ◽  
Vol 26 (9) ◽  
pp. 2751
Author(s):  
Damian Jagleniec ◽  
Marcin Wilczek ◽  
Jan Romański

Combining three features—the high affinity of squaramides toward anions, cooperation in ion pair binding and preorganization of the binding domains in the tripodal platform—led to the effective receptor 2. The lack of at least one of these key elements in the structures of reference receptors 3 and 4 caused a lower affinity towards ion pairs. Receptor 2 was found to form an intramolecular network in wet chloroform, which changed into inorganic–organic associates after contact with ions and allowed salts to be extracted from an aqueous to an organic phase. The disparity in the binding mode of 2 with sulfates and with other monovalent anions led to the selective extraction of extremely hydrated sulfate anions in the presence of more lipophilic salts, thus overcoming the Hofmeister series.


2020 ◽  
Vol 92 (10) ◽  
pp. 1627-1641
Author(s):  
Guangguo Wang ◽  
Yongquan Zhou ◽  
He Lin ◽  
Zhuanfang Jing ◽  
Hongyan Liu ◽  
...  

AbstractThe structure of aq. sodium acetate solution (CH3COONa, NaOAc) was studied by X-ray scattering and density function theory (DFT). For the first hydrated layer of Na+, coordination number (CN) between Na+ and O(W, I) decreases from 5.02 ± 0.85 at 0.976 mol/L to 3.62 ± 1.21 at 4.453 mol/L. The hydration of carbonyl oxygen (OC) and hydroxyl oxygen (OOC) of CH3COO− were investigated separately and the OC shows a stronger hydration bonds comparing with OOC. With concentrations increasing, the hydration shell structures of CH3COO− are not affected by the presence of large number of ions, each CH3COO− group binds about 6.23 ± 2.01 to 7.35 ± 1.73 water molecules, which indicates a relatively strong interaction between CH3COO− and water molecules. The larger uncertainty of the CN of Na+ and OC(OOC) reflects the relative looseness of Na-OC and Na-OOC ion pairs in aq. NaOAc solutions, even at the highest concentration (4.453 mol/L), suggesting the lack of contact ion pair (CIP) formation. In aq. NaOAc solutions, the so called “structure breaking” property of Na+ and CH3COO− become effective only for the second hydration sphere of bulk water. The DFT calculations of CH3COONa (H2O)n=5–7 clusters suggest that the solvent-shared ion pair (SIP) structures appear at n = 6 and become dominant at n = 7, which is well consistent with the result from X-ray scattering.


2011 ◽  
Vol 89 (8) ◽  
pp. 971-977
Author(s):  
Danielle M. Chisholm ◽  
Robert McDonald ◽  
J. Scott McIndoe

Methylation of aromatic amino groups is usually straightforward, but the formation of two intramolecular hydrogen bonds in 3,3′-N,N′-bis(amino)-2,2′-bipyridine and (or) the potential for ring methylation prevents the clean tetramethylation of this molecule. Numerous attempts to make 3,3′-N,N′-bis(dimethylamino)-2,2′-bipyridine produced only complex mixtures of variously methylated products, and the only isolated molecule was 3,3′-N,N′-bis(methylamino)-2,2′-bipyridine, for which an X-ray crystal structure was obtained.


2013 ◽  
Vol 68 (3) ◽  
pp. 214-222 ◽  
Author(s):  
Jörg Hübscher ◽  
Michael Günthel ◽  
Robert Rosin ◽  
Wilhelm Seichter ◽  
Florian Mertens ◽  
...  

Two new linker-type molecules 1a and 1b composed of o-hydroxyacetophenone coordinative groups attached to linear ethynylene or 1,4-phenylenediethynylene spacer units have been synthesised and structurally characterised. An X-ray crystallographic study for both compounds has shown structures with strong intramolecular hydrogen bonds fitting in the model of ‘Intramolecular Resonance Assisted Hydrogen Bond (IRHAB)’. Initial coordination experiments with Cu(II) were performed and the resulting materials characterised by PXRD. The similarity of the copper coordination between these compounds and copper(II) acetylacetonate complexes was demonstrated by XPS measurements. Based on the evidence of these studies, and on elemental analysis, the formation of the corresponding coordination polymers comprising Cu(II) and the linkers has been proposed


Sign in / Sign up

Export Citation Format

Share Document