scholarly journals Identification, Molecular Characteristic, and Expression Analysis of PIFs Related to Chlorophyll Metabolism in Tea Plant (Camellia sinensis)

2021 ◽  
Vol 22 (20) ◽  
pp. 10949
Author(s):  
Xiangna Zhang ◽  
Ligui Xiong ◽  
Yong Luo ◽  
Beibei Wen ◽  
Kunbo Wang ◽  
...  

The phytochrome-interacting factors (PIFs) proteins belong to the subfamily of basic helix–loop–helix (bHLH) transcription factors and play important roles in chloroplast development and chlorophyll biosynthesis. Currently, knowledge about the PIF gene family in Camellia sinensis remains very limited. In this study, seven PIF members were identified in the C. sinensis genome and named based on homology with AtPIF genes in Arabidopsis thaliana. All C. sinensis PIF (CsPIF) proteins have both the conserved active PHYB binding (APB) and bHLH domains. Phylogenetic analysis revealed that CsPIFs were clustered into four groups—PIF1, PIF3, PIF7, and PIF8—and most CsPIFs were clustered in pairs with their corresponding orthologs in Populus tremula. CsPIF members in the same group tended to display uniform or similar exon–intron distribution patterns and motif compositions. CsPIF genes were differentially expressed in C. sinensis with various leaf colors and strongly correlated with the expression of genes involved in the chlorophyll metabolism pathway. Promoter analysis of structural genes related to chlorophyll metabolism found DNA-binding sites of PIFs were abundant in the promoter regions. Protein–protein interaction networks of CsPIFs demonstrated a close association with phytochrome, PIF4, HY5, TOC1, COP1, and PTAC12 proteins. Additionally, subcellular localization and transcriptional activity analysis suggested that CsPIF3b was nuclear localized protein and possessed transcriptional activity. We also found that CsPIF3b could activate the transcription of CsHEMA and CsPOR in Nicotiana benthamiana leaves. This work provides comprehensive research of CsPIFs and would be helpful to further promote the regulation mechanism of PIF on chlorophyll metabolism in C. sinensis.

BMC Genomics ◽  
2019 ◽  
Vol 20 (1) ◽  
Author(s):  
Shengrui Liu ◽  
Yanlin An ◽  
Wei Tong ◽  
Xiuju Qin ◽  
Lidia Samarina ◽  
...  

Abstract Background Single nucleotide polymorphisms (SNPs) and insertions/deletions (InDels) are the major genetic variations and are distributed extensively across the whole plant genome. However, few studies of these variations have been conducted in the long-lived perennial tea plant. Results In this study, we investigated the genome-wide genetic variations between Camellia sinensis var. sinensis ‘Shuchazao’ and Camellia sinensis var. assamica ‘Yunkang 10’, identified 7,511,731 SNPs and 255,218 InDels based on their whole genome sequences, and we subsequently analyzed their distinct types and distribution patterns. A total of 48 InDel markers that yielded polymorphic and unambiguous fragments were developed when screening six tea cultivars. These markers were further deployed on 46 tea cultivars for transferability and genetic diversity analysis, exhibiting information with an average 4.02 of the number of alleles (Na) and 0.457 of polymorphism information content (PIC). The dendrogram showed that the phylogenetic relationships among these tea cultivars are highly consistent with their genetic backgrounds or original places. Interestingly, we observed that the catechin/caffeine contents between ‘Shuchazao’ and ‘Yunkang 10’ were significantly different, and a large number of SNPs/InDels were identified within catechin/caffeine biosynthesis-related genes. Conclusion The identified genome-wide genetic variations and newly-developed InDel markers will provide a valuable resource for tea plant genetic and genomic studies, especially the SNPs/InDels within catechin/caffeine biosynthesis-related genes, which may serve as pivotal candidates for elucidating the molecular mechanism governing catechin/caffeine biosynthesis.


2019 ◽  
Author(s):  
Shengrui Liu ◽  
Yanlin An ◽  
Wei Tong ◽  
Xiuju Qin ◽  
Lidia Samarina ◽  
...  

Abstract Single nucleotide polymorphisms (SNPs) and Insertions/Deletions (InDels) are the major genetic variations and distributed extensively across the plant whole genome. Few investigations of these variations, however, have been performed in the long-lived perennial tea plant. Here, we have investigated the genome-wide genetic variation between Camellia sinensis var. sinensis ‘Shuchazao’ and Camellia sinensis var. assamica ‘Yunkang 10’, generating 7,511,731 SNPs and 255,218 InDels based on their whole genome sequences, and subsequently analyzed their distinct types and distribution patterns. A total of 48 InDel markers that yielded polymorphic and unambiguous fragments were developed when screening six tea cultivars. These markers were further deployed on forty-six tea cultivars for transferability and genetic diversity analysis, exhibiting informative with an average 4.02 of the number of alleles ( Na ) and 0.457 of polymorphism information content (PIC). The dendrogram showed that the phylogenetic relationships among these tea cultivars are highly consistent with their genetic backgrounds or original places. Interestingly, we observed that the content of catechin/caffeine between ‘Shuchazao’ and ‘Yunkang 10’ were significantly different, and a large number of SNPs/InDels were identified within catechin/caffeine biosynthesis-related genes. The identified genome-wide genetic variation and newly-developed InDel markers will provide a valuable resource for tea plant genetics and genomics studies, especially those SNPs/InDels within catechin/caffeine biosynthesis-related genes can be served as pivotal candidates for elucidating the molecular mechanism of catechin/caffeine biosynthesis.


2020 ◽  
Author(s):  
Jiaxin Wang ◽  
Qianhui Tang ◽  
Kang Sun ◽  
Liang Zeng ◽  
Zhijun Wu

Abstract Background: Tea plant (Camellia sinensis) is an important woody economic crop used for processing leaf-type beverages. Tea has been proved to be beneficial to human health because it is rich in tea polyphenols and other active ingredients. Numerous studies have shown that light is a necessary environmental condition to control the growth and metabolism of C. sinensis. Gene expression experiments are always performed to explore the transcriptional regulation mechanism of plants widely based on the technique of quantitative real time polymerase chain reaction (qRT-PCR). The screening and application of reference genes are necessary for the normalization of gene expression under specific conditions. However, the reference genes for systematic analysis of light-induced transcription mechanisms are still not available in C. sinensis.Results: In this research, we identified actin family genes that are always used as reference genes with high frequency and without distinction for various expression experiments in C. sinensis. Six pairs of distinctive primers (corresponding to CsACT1, CsACT2, CsACT(3-4), CsACT(5-6), CsACT(7-8), and CsACT(9-10) genes) were designed to evaluate their expression stability in response to light quality (LQ), light intensity (LI), and photoperiod (PD). Simultaneously, six other family members (CsUBC1, CsCLATHRIN1, CsGAPDH, CsTBP, CsTIP41, and CseIF-4α) of C. sinensis commonly used as reference genes were also investigated. The stability rankings of gene expression were calculated by the statistical algorithms of geNorm, BestKeeper, NormFinder, and RefFinder softwares. Conclusions: CsACT(5-6), CsTIP41, and CsACT(3-4) were the most stable genes for light quality (LQ), light intensity (LI), and photoperiod (PD) treatments, respectively. This study provides a basis for the selection of reference genes for future research on the transcription mechanism of light response in C. sinensis. Moreover, the analysis of actin family members of C. sinensis will help to understand the individual transcription mechanism of housekeeping family.


2019 ◽  
Author(s):  
Shengrui Liu ◽  
Yanlin An ◽  
Wei Tong ◽  
Xiuju Qin ◽  
Lidia Samarina ◽  
...  

Abstract Background: Single nucleotide polymorphisms (SNPs) and insertions/deletions (InDels) are the major genetic variations and are distributed extensively across the whole plant genome. However, few studies of these variations have been conducted in the long-lived perennial tea plant. Results: In this study, we investigated the genome-wide genetic variations between Camellia sinensis var. sinensis ‘Shuchazao’ and Camellia sinensis var. assamica ‘Yunkang 10’, identified 7,511,731 SNPs and 255,218 InDels based on their whole genome sequences, and we subsequently analyzed their distinct types and distribution patterns. A total of 48 InDel markers that yielded polymorphic and unambiguous fragments were developed when screening six tea cultivars. These markers were further deployed on forty-six tea cultivars for transferability and genetic diversity analysis, exhibiting information with an average 4.02 of the number of alleles (Na) and 0.457 of polymorphism information content (PIC). The dendrogram showed that the phylogenetic relationships among these tea cultivars are highly consistent with their genetic backgrounds or original places. Interestingly, we observed that the catechin/caffeine contents between ‘Shuchazao’ and ‘Yunkang 10’ were significantly different, and a large number of SNPs/InDels were identified within catechin/caffeine biosynthesis-related genes. Conclusion: The identified genome-wide genetic variations and newly-developed InDel markers will provide a valuable resource for tea plant genetic and genomic studies, especially the SNPs/InDels within catechin/caffeine biosynthesis-related genes, which may serve as pivotal candidates for elucidating the molecular mechanism governing catechin/caffeine biosynthesis.


2018 ◽  
Vol 44 (3) ◽  
pp. 463 ◽  
Author(s):  
Zhang PENG ◽  
Hua-Rong TONG ◽  
Guo-Lu LIANG ◽  
Yi-Qi SHI ◽  
Lian-Yu YUAN

2015 ◽  
Vol 41 (2) ◽  
pp. 240 ◽  
Author(s):  
Chun-Lei MA ◽  
Ming-Zhe YAO ◽  
Xin-Chao WANG ◽  
Ji-Qiang JIN ◽  
Jian-Qiang MA ◽  
...  

2016 ◽  
Vol 42 (1) ◽  
pp. 58 ◽  
Author(s):  
Bo WANG ◽  
Hong-Li CAO ◽  
Yu-Ting HUANG ◽  
Yu-Rong HU ◽  
Wen-Jun QIAN ◽  
...  

2021 ◽  
Vol 285 ◽  
pp. 110164
Author(s):  
Ya-Zhuo Yang ◽  
Tong Li ◽  
Rui-Min Teng ◽  
Miao-Hua Han ◽  
Jing Zhuang

Sign in / Sign up

Export Citation Format

Share Document