scholarly journals In Silico and In Vivo Analysis of Amino Acid Substitutions That Cause Laminopathies

2021 ◽  
Vol 22 (20) ◽  
pp. 11226
Author(s):  
Benjamin E. Hinz ◽  
Sydney G. Walker ◽  
Austin Xiong ◽  
Rose A. Gogal ◽  
Michael J. Schnieders ◽  
...  

Mutations in the LMNA gene cause diseases called laminopathies. LMNA encodes lamins A and C, intermediate filaments with multiple roles at the nuclear envelope. LMNA mutations are frequently single base changes that cause diverse disease phenotypes affecting muscles, nerves, and fat. Disease-associated amino acid substitutions were mapped in silico onto three-dimensional structures of lamin A/C, revealing no apparent genotype–phenotype connections. In silico analyses revealed that seven of nine predicted partner protein binding pockets in the Ig-like fold domain correspond to sites of disease-associated amino acid substitutions. Different amino acid substitutions at the same position within lamin A/C cause distinct diseases, raising the question of whether the nature of the amino acid replacement or genetic background differences contribute to disease phenotypes. Substitutions at R249 in the rod domain cause muscular dystrophies with varying severity. To address this variability, we modeled R249Q and R249W in Drosophila Lamin C, an orthologue of LMNA. Larval body wall muscles expressing mutant Lamin C caused abnormal nuclear morphology and premature death. When expressed in indirect flight muscles, R249W caused a greater number of adults with wing posturing defects than R249Q, consistent with observations that R249W and R249Q cause distinct muscular dystrophies, with R249W more severe. In this case, the nature of the amino acid replacement appears to dictate muscle disease severity. Together, our findings illustrate the utility of Drosophila for predicting muscle disease severity and pathogenicity of variants of unknown significance.

Genetics ◽  
2001 ◽  
Vol 158 (1) ◽  
pp. 279-290 ◽  
Author(s):  
Jorge Vieira ◽  
Bryant F McAllister ◽  
Brian Charlesworth

Abstract We analyze genetic variation at fused1, a locus that is close to the centromere of the X chromosome-autosome (X/4) fusion in Drosophila americana. In contrast to other X-linked and autosomal genes, for which a lack of population subdivision in D. americana has been observed at the DNA level, we find strong haplotype structure associated with the alternative chromosomal arrangements. There are several derived fixed differences at fused1 (including one amino acid replacement) between two haplotype classes of this locus. From these results, we obtain an estimate of an age of ∼0.61 million years for the origin of the two haplotypes of the fused1 gene. Haplotypes associated with the X/4 fusion have less DNA sequence variation at fused1 than haplotypes associated with the ancestral chromosome arrangement. The X/4 haplotypes also exhibit clinal variation for the allele frequencies of the three most common amino acid replacement polymorphisms, but not for adjacent silent polymorphisms. These patterns of variation are best explained as a result of selection acting on amino acid substitutions, with geographic variation in selection pressures.


2021 ◽  
Vol 22 (4) ◽  
pp. 1695
Author(s):  
Bruno O. Villoutreix ◽  
Vincent Calvez ◽  
Anne-Geneviève Marcelin ◽  
Abdel-Majid Khatib

SARS-CoV-2 exploits angiotensin-converting enzyme 2 (ACE2) as a receptor to invade cells. It has been reported that the UK and South African strains may have higher transmission capabilities, eventually in part due to amino acid substitutions on the SARS-CoV-2 Spike protein. The pathogenicity seems modified but is still under investigation. Here we used the experimental structure of the Spike RBD domain co-crystallized with part of the ACE2 receptor, several in silico methods and numerous experimental data reported recently to analyze the possible impacts of three amino acid replacements (Spike K417N, E484K, N501Y) with regard to ACE2 binding. We found that the N501Y replacement in this region of the interface (present in both the UK and South African strains) should be favorable for the interaction with ACE2, while the K417N and E484K substitutions (South African strain) would seem neutral or even unfavorable. It is unclear if the N501Y substitution in the South African strain could counterbalance the K417N and E484K Spike replacements with regard to ACE2 binding. Our finding suggests that the UK strain should have higher affinity toward ACE2 and therefore likely increased transmissibility and possibly pathogenicity. If indeed the South African strain has a high transmission level, this could be due to the N501Y replacement and/or to substitutions in regions located outside the direct Spike–ACE2 interface but not so much to the K417N and E484K replacements. Yet, it should be noted that amino acid changes at Spike position 484 can lead to viral escape from neutralizing antibodies. Further, these amino acid substitutions do not seem to induce major structural changes in this region of the Spike protein. This structure–function study allows us to rationalize some observations made for the UK strain but raises questions for the South African strain.


Author(s):  
Timur Mansurovich Garaev ◽  
Artyom Irorevich Odnovorov ◽  
Alexander Aleksandrovich Lashkov ◽  
Tatiana Vladimirovna Grebennikova ◽  
Marina Pavlovna Finogenova ◽  
...  

2010 ◽  
Vol 31 (3) ◽  
pp. 335-346 ◽  
Author(s):  
Matthew Mort ◽  
Uday S. Evani ◽  
Vidhya G. Krishnan ◽  
Kishore K. Kamati ◽  
Peter H. Baenziger ◽  
...  

1974 ◽  
Vol 27 (3) ◽  
pp. 309 ◽  
Author(s):  
J Langridge

The effect of amino acid replacements on enzyme function was studied in the tJ-galactosidase of Escherichia coli. Mutants possessing 50% or less of normal enzyme activity were isolated and examined. Of 733 amino acid substitutions calculated to have occurred, only 11 reduced tJ-galactosidase activity below 50 %. These mutations were expressed because they greatly impaired the substrate affinity or catalytic efficiency of the enzyme. The inertness of the enzyme to amino acid replacement was confirmed by immunological tests of tJ-galactosidase molecules changed in amino acid sequence by suppression.


Viruses ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 787
Author(s):  
Yasmin Hisham ◽  
Yaqoub Ashhab ◽  
Sang-Hyun Hwang ◽  
Dong-Eun Kim

One of the most effective strategies for eliminating new and emerging infectious diseases is effective immunization. The pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) warrants the need for a maximum coverage vaccine. Moreover, mutations that arise within the virus have a significant impact on the vaccination strategy. Here, we built a comprehensive in silico workflow pipeline to identify B-cell- and T-cell-stimulating antigens of SARS-CoV-2 viral proteins. Our in silico reverse vaccinology (RV) approach consisted of two parts: (1) analysis of the selected viral proteins based on annotated cellular location, antigenicity, allele coverage, epitope density, and mutation density and (2) analysis of the various aspects of the epitopes, including antigenicity, allele coverage, IFN-γ induction, toxicity, host homology, and site mutational density. After performing a mutation analysis based on the contemporary mutational amino acid substitutions observed in the viral variants, 13 potential epitopes were selected as subunit vaccine candidates. Despite mutational amino acid substitutions, most epitope sequences were predicted to retain immunogenicity without toxicity and host homology. Our RV approach using an in silico pipeline may potentially reduce the time required for effective vaccine development and can be applicable for vaccine development for other pathogenic diseases as well.


Sign in / Sign up

Export Citation Format

Share Document