scholarly journals Kinetic Studies of Newly Patented Aminoalkanol Derivatives with Potential Anticancer Activity as Competitive Inhibitors of Prostate Acid Phosphatase

2021 ◽  
Vol 22 (21) ◽  
pp. 11761
Author(s):  
Błażej Grodner ◽  
Mariola Napiórkowska ◽  
Dariusz Maciej Pisklak

Background: Acid phosphatase and its regulation are important objects of biological and clinical research and play an important role in the development and treatment of prostate and bone diseases. The newly patented aminoalkanol (4-[2-hydroxy-3-(propan-2-ylamino)propyl]-1,7-dimethyl-8,9-diphenyl-4-azatricyclo[5.2.1.02,6]dec-8-ene-3,5,10-trione hydrochloride) (I) and (4-[3-(dimethylamino)-2-hydroxypropyl]-1,7-dimethyl-8,9-diphenyl-4-azatricyclo[5.2.1.02,6]dec-8-ene-3,5,10-trione hydrochloride) (II) derivatives have potential anticancer activity, and their influence on enzymatic activity can significantly impact the therapeutic effects of acid phosphatase against many diseases. Therefore, in this study, we investigated the action of compounds (I) and (II) on acid phosphatase. Methods: Capillary electrophoresis was used to evaluate the inhibition of acid phosphatase. Lineweaver–Burk plots were constructed to compare the Km of this enzyme in the presence of inhibitors (I) or (II) with the Km in solutions without these inhibitors. Results: Compound (I) showed a stronger competitive inhibition against acid phosphatase, whereas derivative (II) showed a weaker competitive type of inhibition. The detailed kinetic studies of these compounds showed that their type and strength of inhibition as well as affinity depend on the kind of substituent occurring in the main chemical molecule. Conclusions: This study is of great importance because the disclosed inhibition of acid phosphatase by compounds (I) and (II) raises the question of whether these compounds could have any effect on the treatment possibilities of prostate diseases.

2019 ◽  
Vol 16 (6) ◽  
pp. 637-644
Author(s):  
Hongyu Cao ◽  
Yanhua Wu ◽  
Xingzhi Zhou ◽  
Xuefang Zheng ◽  
Ge Jiang

Background: N-myc downstream regulated gene 3 (NDRG3) is a newly discovered oxygen-regulated protein which will bind with L-Lactate in hypoxia and further activate Raf (rapidly accelerated fibrosarcoma)-ERK (extracellular regulated protein kinases) pathway, promoting cell growth and angiogenesis. Methods: Competitive inhibition on the binding of NDRG3 and L-Lactate may be potentially a useful strategy for the repression of hypoxic response mediated by NDRG3. The threedimensional (3D) structure of NDRG3 was built by using homology modeling for its crystal structure was not available. Then, L-Lactate was docked into NDRG3, from which we knew it bound with amino acid residues Gln69, His183, Asn189, Ala72 and Pro66 of NDRG3 in the most possible active sites. Approximately 3000 compounds have been virtually screened and the 6 topranked compounds were selected as reference molecules to analyze their interaction relationships, which illustrated that some of them might form electrostatic interaction with Glu70 and Asp187, π-&π stack with Phe75 and Tyr180, hydrogen bonds with Gly71 and Asn189, hydrophobic effect with Ala72 and Ile184. Results: Novel molecules were designed through structural optimization of the 6 top-ranked compounds and subsequently their ADMET properties were predicted. Conclusion: These molecules may be potential drug candidates for the suppression of hypoxic response mediated by NDRG3 and targeted therapy for hypoxia-induced diseases.


2020 ◽  
Vol 16 (2) ◽  
pp. 135-144
Author(s):  
Ravneet K. Grewal ◽  
Baldeep Kaur ◽  
Gagandeep Kaur

Background: Amylases are the most widely used biocatalysts in starch saccharification and detergent industries. However, commercially available amylases have few limitations viz. limited activity at low or high pH and Ca2+ dependency. Objective: The quest for exploiting amylase for diverse applications to improve the industrial processes in terms of efficiency and feasibility led us to investigate the kinetics of amylase in the presence of metal ions as a function of pH. Methods: The crude extract from soil fungal isolate cultures is subjected to salt precipitation, dialysis and DEAE cellulose chromatography followed by amylase extraction and is incubated with divalent metal ions (i.e., Ca2+, Fe2+, Cu2+, and Hg2+); Michaelis-Menton constant (Km), and maximum reaction velocity (Vmax) are calculated by plotting the activity data obtained in the absence and presence of ions, as a function of substrate concentration in Lineweaver-Burk Plot. Results: Kinetic studies reveal that amylase is inhibited un-competitively at 5mM Cu2+ at pH 4.5 and 7.5, but non-competitively at pH 9.5. Non-competitive inhibition of amylase catalyzed starch hydrolysis is observed with 5mM Hg2+ at pH 9.5, which changes to mixed inhibition at pH 4.5 and 7.5. At pH 4.5, Ca2+ induces K- and V-type activation of amylase catalyzed starch hydrolysis; however, the enzyme has V-type activation at 7mM Ca2+ under alkaline conditions. Also, K- and V-type of activation of amylase is observed in the presence of 7mM Fe2+ at pH 4.5 and 9.5. Conclusion: These findings suggest that divalent ions modulation of amylase is pH dependent. Furthermore, a time-saving and cost-effective solution is proposed to overcome the challenges of the existing methodology of starch hydrolysis in starch and detergent industries.


1972 ◽  
Vol 129 (1) ◽  
pp. 83-89 ◽  
Author(s):  
Ragnar Flengsrud ◽  
Bjarne Østerud ◽  
Hans Prydz

1. The supernatant obtained by centrifugation of a rat liver homogenate at 100000g for 1h contained a heat-labile macromolecular inhibitor of the thrombin–fibrinogen reaction. 2. The inhibitor was purified to electrophoretic homogeneity by repeated preparative polyacrylamide disc electrophoresis. Inhibition was observed with purified inhibitor equivalent to about 1μg of protein/ml. 3. The inhibitor had a pI of 3.50–3.75, a molecular weight (from sodium dodecyl sulphate–polyacrylamide-gel electrophoresis) of 72000±3000 and was inactivated by p-hydroxymercuribenzoate or 5,5′-dithiobis-(2-nitrobenzoic acid). 4. Kinetic studies revealed a non-competitive inhibition, with the inhibitor probably acting on the thrombin–fibrinogen complex.


Molecules ◽  
2019 ◽  
Vol 24 (23) ◽  
pp. 4344 ◽  
Author(s):  
Caio Fernando Ramalho de Oliveira ◽  
Taylla Michelle de Oliveira Flores ◽  
Marlon Henrique Cardoso ◽  
Karen Garcia Nogueira Oshiro ◽  
Raphael Russi ◽  
...  

The Indianmeal moth, Plodia interpunctella, is one of the most damaging pests of stored products. We investigated the insecticidal properties of ApKTI, a Kunitz trypsin inhibitor from Adenanthera pavonina seeds, against P. interpunctella larvae through bioassays with artificial diet. ApKTI-fed larvae showed reduction of up to 88% on larval weight and 75% in survival. Trypsin enzymes extracted from P. interpunctella larvae were inhibited by ApKTI, which also demonstrated capacity to bind to chitin. Kinetic studies revealed a non-competitive inhibition mechanism of ApKTI for trypsin, which were further corroborated by molecular docking studies. Furthermore, we have demonstrated that ApKTI exhibits a hydrophobic pocket near the reactive site loop probably involved in chitin interactions. Taken together, these data suggested that the insecticidal activity of ApKTI for P. interpunctella larvae involves a dual and promiscuous mechanisms biding to two completely different targets. Both processes might impair the P. interpunctella larval digestive process, leading to larvae death before reaching the pupal stage. Further studies are encouraged using ApKTI as a biotechnological tool to control insect pests in field conditions.


1995 ◽  
Vol 31 (2) ◽  
pp. 115-124 ◽  
Author(s):  
O. Nowak ◽  
K. Svardal ◽  
P. Schweighofer

More or less severe nitrification inhibition was observed in several pilot and full-scale activated sludge plants treating industrial wastewaters. In order to control the treatment process under inhibiting conditions, extended nitrification models have been developed on base of the ‘Activated sludge model No. 1’. In the case of temperatures between 25 and 30°C, the nitrification process has been expressed as a two-step reaction with nitrite as intermediate. Model elements for competitive and non-competitive inhibition as well as for biodegradation of the inhibitor were added, if required. The dynamic behaviour of the investigated activated sludge systems indicates that there are biodegradable non-competitive inhibitors. Operational as well as simulation results show that nitrifying activated sludge plants may become acclimatized to inhibitory compounds but have to be protected from peak loads of both nitrogen and inhibitory compounds.


Sign in / Sign up

Export Citation Format

Share Document