scholarly journals Bacteroides fragilis Enterotoxin Upregulates Matrix Metalloproteinase-7 Expression through MAPK and AP-1 Activation in Intestinal Epithelial Cells, Leading to Syndecan-2 Release

2021 ◽  
Vol 22 (21) ◽  
pp. 11817
Author(s):  
Jong Ik Jeon ◽  
Keun Hwa Lee ◽  
Jung Mogg Kim

Bacteroides fragilis enterotoxin (BFT) produced by enterotoxigenic B. fragilis (ETBF) causes colonic inflammation. BFT initially contacts intestinal epithelial cells (IECs) and affects the intestinal barrier. Although molecular components of the gut epithelial barrier such as metalloproteinase-7 (MMP-7) and syndecan-2 are known to be associated with inflammation, little has been reported about MMP-7 expression and syndecan-2 shedding in response to ETBF infection. This study explores the role of BFT in MMP-7 induction and syndecan-2 release in IECs. Stimulating IECs with BFT led to the induction of MMP-7 and the activation of transcription factors such as NF-κB and AP-1. MMP-7 upregulation was not affected by NF-κB, but it was related to AP-1 activation. In BFT-exposed IECs, syndecan-2 release was observed in a time- and concentration-dependent manner. MMP-7 suppression was associated with a reduction in syndecan-2 release. In addition, suppression of ERK, one of the mitogen-activated protein kinases (MAPKs), inhibited AP-1 activity and MMP-7 expression. Furthermore, the suppression of AP-1 and ERK activity was related to the attenuation of syndecan-2 release. These results suggest that a signaling cascade comprising ERK and AP-1 activation in IECs is involved in MMP-7 upregulation and syndecan-2 release during exposure to BFT.

2010 ◽  
Vol 78 (5) ◽  
pp. 2024-2033 ◽  
Author(s):  
Young Mee Yoon ◽  
Jin Young Lee ◽  
Doyoung Yoo ◽  
Young-Suk Sim ◽  
Young-Jeon Kim ◽  
...  

ABSTRACT Enterotoxigenic Bacteroides fragilis (ETBF) produces an approximately 20-kDa heat-labile enterotoxin (BFT) that plays an essential role in mucosal inflammation. Although spontaneous disappearance of ETBF infection is common, little information is available on regulated expression of antibacterial factors in response to BFT stimulation. This study investigates the role of BFT in human β-defensin 2 (hBD-2) induction from intestinal epithelial cells. Stimulation of HT-29 and Caco-2 intestinal epithelial cell lines with BFT resulted in the induction of hBD-2. Activation of a reporter gene for hBD-2 was dependent on the presence of NF-κB binding sites. In contrast, suppression of AP-1 did not affect hBD-2 expression in BFT-stimulated cells. Inhibition of p38 mitogen-activated protein kinase (MAPK) using SB203580 and small interfering RNA (siRNA) transfection resulted in a significant reduction in BFT-induced IκB kinase (IKK)/NF-κB activation and hBD-2 expression. Our results suggest that a pathway including p38 MAPK, IKK, and NF-κB activation is required for hBD-2 induction in intestinal epithelial cells exposed to BFT, and may be involved in the host defense following infection with ETBF.


2002 ◽  
Vol 11 (1) ◽  
pp. 39-45 ◽  
Author(s):  
Fadia R. Homaidan ◽  
Marwan E. El-Sabban ◽  
Iman Chakroun ◽  
Mirvat El-Sibai ◽  
Ghassan S. Dbaibo

Background: In inflammatory bowel disease (IBD), cytokine levels (such as interleukin-1 (IL-1)) are elevated. We have shown previously that IL-1 activates phospholipid signaling pathways in intestinal epithelial cells (IEC), leading to increased ceramide levels.Aim: To determine whether ceramide induces apoptosis in IEC.Methods: Apoptosis was evaluated by annexin-Vbinding or Hoechst nuclear staining. Levels of bcl-2, bcl-x, bax, p53 and p21 were determined by Western blotting, and cell cycle analysis was determined by flow cytometry.Results: IL-1 increased ceramide accumulation in a time-dependent and concentration-dependent manner with a peak response at 4 h, with [IL-1] = 30 ng/ml. Neither IL-1 nor ceramide induced apoptosis in IEC, but they increased bcl-2 levels and decreased bax and p21 levels without affecting bcl-x and p53 levels. They also caused a slight but significant increase in the G2/M phase. These data suggest a role for ceramide in IBD and suggest a possible mechanism for the enhanced tumorigenic activity in IBD patients.


2016 ◽  
Vol 84 (9) ◽  
pp. 2541-2554 ◽  
Author(s):  
Su Hyuk Ko ◽  
Da Jeong Rho ◽  
Jong Ik Jeon ◽  
Young-Jeon Kim ◽  
Hyun Ae Woo ◽  
...  

TheBacteroides fragilisenterotoxin (BFT), a virulence factor of enterotoxigenicB. fragilis(ETBF), interacts with intestinal epithelial cells and can provoke signals that induce mucosal inflammation. Although expression of heme oxygenase-1 (HO-1) is associated with regulation of inflammatory responses, little is known about HO-1 induction in ETBF infection. This study was conducted to investigate the effect of BFT on HO-1 expression in intestinal epithelial cells. Stimulation of intestinal epithelial cells with BFT resulted in upregulated expression of HO-1. BFT activated transcription factors such as NF-κB, AP-1, and Nrf2 in intestinal epithelial cells. Upregulation of HO-1 in intestinal epithelial cells was dependent on activated IκB kinase (IKK)–NF-κB signals. However, suppression of Nrf2 or AP-1 signals in intestinal epithelial cells did not result in significant attenuation of BFT-induced HO-1 expression. HO-1 induction via IKK–NF-κB in intestinal epithelial cells was regulated by p38 mitogen-activated protein kinases (MAPKs). Furthermore, suppression of HO-1 activity led to increased apoptosis in BFT-stimulated epithelial cells. These results suggest that a signaling pathway involving p38 MAPK–IKK–NF-κB in intestinal epithelial cells is required for HO-1 induction during exposure to BFT. Following this induction, increased HO-1 expression may regulate the apoptotic process in responses to BFT stimulation.


2016 ◽  
Vol 310 (7) ◽  
pp. C542-C557 ◽  
Author(s):  
Jia Wang ◽  
Liang Han ◽  
James Sinnett-Smith ◽  
Li-Li Han ◽  
Jan V. Stevens ◽  
...  

Given the fundamental role of β-catenin signaling in intestinal epithelial cell proliferation and the growth-promoting function of protein kinase D1 (PKD1) in these cells, we hypothesized that PKDs mediate cross talk with β-catenin signaling. The results presented here provide several lines of evidence supporting this hypothesis. We found that stimulation of intestinal epithelial IEC-18 cells with the G protein-coupled receptor (GPCR) agonist angiotensin II (ANG II), a potent inducer of PKD activation, promoted endogenous β-catenin nuclear localization in a time-dependent manner. A significant increase was evident within 1 h of ANG II stimulation ( P < 0.01), peaked at 4 h ( P < 0.001), and declined afterwards. GPCR stimulation also induced a marked increase in β-catenin-regulated genes and phosphorylation at Ser552 in intestinal epithelial cells. Exposure to preferential inhibitors of the PKD family (CRT006610 or kb NB 142-70) or knockdown of the isoforms of the PKD family prevented the increase in β-catenin nuclear localization and phosphorylation at Ser552 in response to ANG II. GPCR stimulation also induced the formation of a complex between PKD1 and β-catenin, as shown by coimmunoprecipitation that depended on PKD1 catalytic activation, as it was abrogated by cell treatment with PKD family inhibitors. Using transgenic mice that express elevated PKD1 protein in the intestinal epithelium, we detected a marked increase in the localization of β-catenin in the nucleus of crypt epithelial cells in the ileum of PKD1 transgenic mice, compared with nontransgenic littermates. Collectively, our results identify a novel cross talk between PKD and β-catenin in intestinal epithelial cells, both in vitro and in vivo.


2008 ◽  
Vol 295 (5) ◽  
pp. G965-G976 ◽  
Author(s):  
Elena V. Vassilieva ◽  
Kirsten Gerner-Smidt ◽  
Andrei I. Ivanov ◽  
Asma Nusrat

Intestinal mucosal inflammation is associated with epithelial wounds that rapidly reseal by migration of intestinal epithelial cells (IECs). Cell migration involves cycles of cell-matrix adhesion/deadhesion that is mediated by dynamic turnover (assembly and disassembly) of integrin-based focal adhesions. Integrin endocytosis appears to be critical for deadhesion of motile cells. However, mechanisms of integrin internalization during remodeling of focal adhesions of migrating IECs are not understood. This study was designed to define the endocytic pathway that mediates internalization of β1-integrin in migrating model IECs. We observed that, in SK-CO15 and T84 colonic epithelial cells, β1-integrin is internalized in a dynamin-dependent manner. Pharmacological inhibition of clathrin-mediated endocytosis or macropinocytosis and small-interfering RNA (siRNA)-mediated knock down of clathrin did not prevent β1-integrin internalization. However, β1-integrin internalization was inhibited following cholesterol extraction and after overexpression of lipid raft protein, caveolin-1. Furthermore, internalized β1-integrin colocalized with the lipid rafts marker cholera toxin, and siRNA-mediated knockdown of caveolin-1 and flotillin-1/2 increased β1-integrin endocytosis. Our data suggest that, in migrating IEC, β1-integrin is internalized via a dynamin-dependent lipid raft-mediated pathway. Such endocytosis is likely to be important for disassembly of integrin-based cell-matrix adhesions and therefore in regulating IEC migration and wound closure.


Sign in / Sign up

Export Citation Format

Share Document