scholarly journals A Novel Method of Mouse RPE Explant Culture and Effective Introduction of Transgenes Using Adenoviral Transduction for In Vitro Studies in AMD

2021 ◽  
Vol 22 (21) ◽  
pp. 11979
Author(s):  
Peng Shang ◽  
Nadezda A. Stepicheva ◽  
Haitao Liu ◽  
Olivia Chowdhury ◽  
Jonathan Franks ◽  
...  

Degeneration of retinal pigment epithelium (RPE) is one of the most critical phenotypic changes of age-related macular degeneration (AMD), the leading cause of vision loss in the elderly. While cultured polarized RPE cells with original properties are valuable in in vitro models to study RPE biology and the consequences of genetic and/or pharmacological manipulations, the procedure to establish mouse primary PRE cell culture or pluripotent stem cell-derived RPE cells is time-consuming and yields a limited number of cells. Thus, establishing a mouse in situ RPE culture system is highly desirable. Here we describe a novel and efficient method for RPE explant culture that allows for obtaining biologically relevant RPE cells in situ. These RPE explants (herein referred to as RPE flatmounts) are viable in culture for at least 7 days, can be efficiently transduced with adenoviral constructs, and/or treated with a variety of drugs/chemicals followed by downstream analysis of the signaling pathways/biological processes of interest, such as assessment of the autophagy flux, inflammatory response, and receptor tyrosine kinases stimulation. This method of RPE explant culture is highly beneficial for pharmacological and mechanistic studies in the field of RPE biology and AMD research.

2021 ◽  
Vol 22 (21) ◽  
pp. 11317
Author(s):  
Abdullah Al-Ani ◽  
Derek Toms ◽  
Saud Sunba ◽  
Kayla Giles ◽  
Yacine Touahri ◽  
...  

The retinal pigmented epithelium (RPE) plays a critical role in photoreceptor survival and function. RPE deficits are implicated in a wide range of diseases that result in vision loss, including age-related macular degeneration (AMD) and Stargardt disease, affecting millions worldwide. Subretinal delivery of RPE cells is considered a promising avenue for treatment, and encouraging results from animal trials have supported recent progression into the clinic. However, the limited survival and engraftment of transplanted RPE cells delivered as a suspension continues to be a major challenge. While RPE delivery as epithelial sheets exhibits improved outcomes, this comes at the price of increased complexity at both the production and transplant stages. In order to combine the benefits of both approaches, we have developed size-controlled, scaffold-free RPE microtissues (RPE-µTs) that are suitable for scalable production and delivery via injection. RPE-µTs retain key RPE molecular markers, and interestingly, in comparison to conventional monolayer cultures, they show significant increases in the transcription and secretion of pigment-epithelium-derived factor (PEDF), which is a key trophic factor known to enhance the survival and function of photoreceptors. Furthermore, these microtissues readily spread in vitro on a substrate analogous to Bruch’s membrane, suggesting that RPE-µTs may collapse into a sheet upon transplantation. We anticipate that this approach may provide an alternative cell delivery system to improve the survival and integration of RPE transplants, while also retaining the benefits of low complexity in production and delivery.


2018 ◽  
Vol 19 (8) ◽  
pp. 2317 ◽  
Author(s):  
Kai Kaarniranta ◽  
Jakub Kajdanek ◽  
Jan Morawiec ◽  
Elzbieta Pawlowska ◽  
Janusz Blasiak

PGC-1α (peroxisome proliferator-activated receptor gamma coactivator 1-alpha) is a transcriptional coactivator of many genes involved in energy management and mitochondrial biogenesis. PGC-1α expression is associated with cellular senescence, organismal aging, and many age-related diseases, including AMD (age-related macular degeneration), an important global issue concerning vision loss. We and others have developed a model of AMD pathogenesis, in which stress-induced senescence of retinal pigment epithelium (RPE) cells leads to AMD-related pathological changes. PGC-1α can decrease oxidative stress, a key factor of AMD pathogenesis related to senescence, through upregulation of antioxidant enzymes and DNA damage response. PGC-1α is an important regulator of VEGF (vascular endothelial growth factor), which is targeted in the therapy of wet AMD, the most devastating form of AMD. Dysfunction of mitochondria induces cellular senescence associated with AMD pathogenesis. PGC-1α can improve mitochondrial biogenesis and negatively regulate senescence, although this function of PGC-1α in AMD needs further studies. Post-translational modifications of PGC-1α by AMPK (AMP kinase) and SIRT1 (sirtuin 1) are crucial for its activation and important in AMD pathogenesis.


F1000Research ◽  
2018 ◽  
Vol 7 ◽  
pp. 1107 ◽  
Author(s):  
Savannah A. Lynn ◽  
Eloise Keeling ◽  
Jennifer M. Dewing ◽  
David A. Johnston ◽  
Anton Page ◽  
...  

The retinal pigment epithelium (RPE) plays a key role in the pathogenesis of several blinding retinopathies. Alterations to RPE structure and function are reported in Age-related Macular Degeneration, Stargardt and Best disease as well as pattern dystrophies. However, the precise role of RPE cells in disease aetiology remains incompletely understood. Many studies into RPE pathobiology have utilised animal models, which only recapitulate limited disease features. Some studies are also difficult to carry out in animals as the ocular space remains largely inaccessible to powerful microscopes. In contrast, in-vitro models provide an attractive alternative to investigating pathogenic RPE changes associated with age and disease. In this article we describe the step-by-step approach required to establish an experimentally versatile in-vitro culture model of the outer retina incorporating the RPE monolayer and supportive Bruch’s membrane (BrM). We show that confluent monolayers of the spontaneously arisen human ARPE-19 cell-line cultured under optimal conditions reproduce key features of native RPE. These models can be used to study dynamic, intracellular and extracellular pathogenic changes using the latest developments in microscopy and imaging technology. We also discuss how RPE cells from human foetal and stem-cell derived sources can be incorporated alongside sophisticated BrM substitutes to replicate the aged/diseased outer retina in a dish. The work presented here will enable users to rapidly establish a realistic in-vitro model of the outer retina that is amenable to a high degree of experimental manipulation which will also serve as an attractive alternative to using animals. This in-vitro model therefore has the benefit of achieving the 3Rs objective of reducing and replacing the use of animals in research. As well as recapitulating salient structural and physiological features of native RPE, other advantages of this model include its simplicity, rapid set-up time and unlimited scope for detailed single-cell resolution and matrix studies.


2021 ◽  
Author(s):  
Yara A. Samra ◽  
Dina Kira ◽  
Pragya Rajpurohit ◽  
Riyaz Mohamed ◽  
Leah Owen ◽  
...  

Abstract Background: Age related macular degeneration (AMD) is a leading cause of vision loss in old people. Elevated homocysteine (Hcy), known as Hyperhomocysteinemia (HHcy) was reported in association with AMD. We previously reported that HHcy induces AMD like features. The current study suggests activation of N-Methyl-D-aspartate receptor (NMDAR) in retinal pigment epithelium (RPE) cells as a mechanism for HHcy-induced AMD. Serum Hcy and cystathione-β-synthase enzyme (CBS) were assessed by ELISA in AMD patients. The involvement of NMDAR in Hcy’s induced AMD features were evaluated 1)-In-vitro using ARPE-19 cells, primary RPE isolated from mice model of HHcy (CBS) and mouse choroidal endothelial cells (MCEC). 2)-In-vivo using wild type mice and mice deficient in RPE cells NMDAR (NMDARR -/-) with/without intravitreal injection of Hcy. Expression of retinal isolectin-B4, Ki67, HIF-1α, VEGF, NMDAR1 and albumin were assessed by immunofluorescence (IF), Western blot (WB), Optical coherence tomography (OCT), and fluorescein angiography (FA) to evaluate retinal structure, fluorescein leakage and development of choroidal neovascularization (CNV) in living mice. Results: Serum of the neovascular AMD patients showed significant increase in Hcy and decrease in CBS levels. Moreover, Hcy significantly increased angiogenic markers; HIF-1α, VEGF and NMDAR in RPE cells and Ki67 in MCEC. Hcy-injected WT mice showed disrupted retinal morphology and development of CNV. Knocking down NMDAR in RPE improved retinal structure and CNV induction.Conclusion: Our findings underscore the potential role for NMDAR in RPE cells in mediating Hcy-induced features of AMD and CNV induction, thus NMDAR inhibition could provide a promising therapeutic target for AMD.


2021 ◽  
Vol 22 (16) ◽  
pp. 8727
Author(s):  
Angela Armento ◽  
Tiziana L. Schmidt ◽  
Inga Sonntag ◽  
David A. Merle ◽  
Mohamed Ali Jarboui ◽  
...  

Age-related macular degeneration (AMD), the leading cause of vision loss in the elderly, is a degenerative disease of the macula, where retinal pigment epithelium (RPE) cells are damaged in the early stages of the disease, and chronic inflammatory processes may be involved. Besides aging and lifestyle factors as drivers of AMD, a strong genetic association to AMD is found in genes of the complement system, with a single polymorphism in the complement factor H gene (CFH), accounting for the majority of AMD risk. However, the exact mechanism of CFH dysregulation confers such a great risk for AMD and its role in RPE cell homeostasis is unclear. To explore the role of endogenous CFH locally in RPE cells, we silenced CFH in human hTERT-RPE1 cells. We demonstrate that endogenously expressed CFH in RPE cells modulates inflammatory cytokine production and complement regulation, independent of external complement sources, or stressors. We show that loss of the factor H protein (FH) results in increased levels of inflammatory mediators (e.g., IL-6, IL-8, GM-CSF) and altered levels of complement proteins (e.g., C3, CFB upregulation, and C5 downregulation) that are known to play a role in AMD. Moreover, our results identify the NF-κB pathway as the major pathway involved in regulating these inflammatory and complement factors. Our findings suggest that in RPE cells, FH and the NF-κB pathway work in synergy to maintain inflammatory and complement balance, and in case either one of them is dysregulated, the RPE microenvironment changes towards a proinflammatory AMD-like phenotype.


2004 ◽  
Vol 200 (12) ◽  
pp. 1539-1545 ◽  
Author(s):  
Emeline F. Nandrot ◽  
Yoonhee Kim ◽  
Scott E. Brodie ◽  
Xiaozhu Huang ◽  
Dean Sheppard ◽  
...  

Daily phagocytosis by the retinal pigment epithelium (RPE) of spent photoreceptor outer segment fragments is critical for vision. In the retina, early morning circadian photoreceptor rod shedding precedes synchronized uptake of shed photoreceptor particles by RPE cells. In vitro, RPE cells use the integrin receptor αvβ5 for particle binding. Here, we tested RPE phagocytosis and retinal function in β5 integrin–deficient mice, which specifically lack αvβ5 receptors. Retinal photoresponses severely declined with age in β5−/− mice, whose RPE accumulated autofluorescent storage bodies that are hallmarks of human retinal aging and disease. β5−/− RPE in culture failed to take up isolated photoreceptor particles. β5−/− RPE in vivo retained basal uptake levels but lacked the burst of phagocytic activity that followed circadian photoreceptor shedding in wild-type RPE. Rhythmic activation of focal adhesion and Mer tyrosine kinases that mediate wild-type retinal phagocytosis was also completely absent in β5−/− retina. These results demonstrate an essential role for αvβ5 integrin receptors and their downstream signaling pathways in synchronizing retinal phagocytosis. Furthermore, they identify the β5−/− integrin mouse strain as a new animal model of age-related retinal dysfunction.


2021 ◽  
Author(s):  
Angela Armento ◽  
Tiziana Luisa Schmidt ◽  
Inga Sonntag ◽  
David Merle ◽  
Mohamed-ali Jarboui ◽  
...  

Age-related macular degeneration (AMD), the leading cause of vision loss in the elderly, is a degenerative disease of the macula, where retinal pigment epithelium (RPE) cells are damaged in the early stages of the disease and chronic inflammatory processes may be involved. Besides ageing and lifestyle factors as drivers of AMD, a strong genetic association to AMD is found in genes of the complement system, with a single polymorphism in the complement factor H gene (CFH), accounting for the majority of AMD risk. However, the exact mechanism by which CFH dysregulation confers such a great risk for AMD and its role in RPE cells homeostasis is unclear. To explore the role of endogenous CFH locally in RPE cells, we silenced CFH in human hTERT-RPE1 cells. We demonstrate that endogenously expressed CFH in RPE cells modulates inflammatory cytokine production and complement regulation, independent of external complement sources or stressors. We show that loss of the factor H protein (FH) results in increased levels of inflammatory mediators (e.g. IL-6, IL-8, GM-CSF) and altered levels of complement proteins (e.g. C3, CFB upregulation and C5 downregulation) that are known to play a role in AMD. Moreover, we identified the NF-ƙB pathway as the major pathway involved in the regulation of these inflammatory and complement factors. Our findings suggest that in RPE cells, FH and the NF-ƙB pathway work in synergy to maintain inflammatory and complement balance and in case either one of them is dysregulated, the RPE microenvironment changes towards a pro-inflammatory AMD-like phenotype.


2021 ◽  
Author(s):  
Jing Wang ◽  
Qiyu Bo ◽  
Minwen Zhou ◽  
Hong Wang ◽  
Hong Zhu ◽  
...  

Abstract Background: Choroidal neovascularization (CNV) is a devastating pathology of numerous ocular diseases, such as wet age-related macular degeneration (wAMD), which causes irreversible vision loss. Although anti-VEGF therapy has been widely used, poor response or no response exits in some patients, suggesting that some other important angiogenic components play roles. Therefore, the underlined mechanism need to be clarified and new target of anti-angiogenic therapy is urgently needed. Damaged retinal pigment epithelium (RPE) cells have been demonstrated to activate inflammasome, drive a degenerative tissue environment and an enhanced pro-angiogenic response, which emphasizes the dysfunction of RPE, may be the hallmark of the pathogenesis.Methods: C57BL/6J male mice aged between 6 and 8 weeks were subjected to laser-induced CNV models. Chrysin was administered intragastrically at 25 mg/kg daily for 3 days or one week after laser-treated. Then to observe the CNV areas and CNV thickness, immunofluorescence staining of choroidal flatmount, SD-OCT and fluorescein angiograghy were performed, respectively. To further confirm the effect of chrysin on stress-induced DNA damage in RPE cells, RPE cells were administered with A2E and western-blot, cell viability assay, immunofluorescence chromosome PNA-FISH and SA-β-gal staining were performed. To elucidate the underlying mechanism, we performed RNA-seq and bioinformatics analyses.Results: In this study, we demonstrated that chrysin could successfully alleviated choroidal neovascularization. We show that DNA damage of RPE cells is remarkable in laser-induced choroidal neovascularization, resulting in inflammation response, which can be ameliorated by chrysin through inactivation of STAT3. Also, we identify that chrysin can reduce DNA damage, especially telomere erosion, simultaneously compromise the dysfunction of RPE and the secretion of SASP factor in vitro. Mechanistically, KEGG pathway analyzes show that chrsyin improves inflammatory imbalance mainly through down-regulation of IL17 pathway in the laser- induced CNV development.Conclusions: Our results indicate the interplay between DNA damage, perturbed RPE homeostasis, inflammatory imbalance and angiogenesis in laser-induced choroidal neovascularization. Importantly, chrysin may be an effective therapeutic supplement for CNV.


2021 ◽  
Vol 22 (17) ◽  
pp. 9356
Author(s):  
Yara A. Samra ◽  
Dina Kira ◽  
Pragya Rajpurohit ◽  
Riyaz Mohamed ◽  
Leah A. Owen ◽  
...  

Age-related macular degeneration (AMD) is a leading cause of vision loss. Elevated homocysteine (Hcy) (Hyperhomocysteinemia) (HHcy) has been reported in AMD. We previously reported that HHcy induces AMD-like features. This study suggests that N-Methyl-d-aspartate receptor (NMDAR) activation in the retinal pigment epithelium (RPE) is a mechanism for HHcy-induced AMD. Serum Hcy and cystathionine-β-synthase (CBS) were assessed by ELISA. The involvement of NMDAR in Hcy-induced AMD features was evaluated (1) in vitro using ARPE-19 cells, primary RPE isolated from HHcy mice (CBS), and mouse choroidal endothelial cells (MCEC); (2) in vivo using wild-type mice and mice deficient in RPE NMDAR (NMDARR-/-) with/without Hcy injection. Isolectin-B4, Ki67, HIF-1α, VEGF, NMDAR1, and albumin were assessed by immunofluorescence (IF), Western blot (WB), Optical coherence tomography (OCT), and fluorescein angiography (FA) to evaluate retinal structure, fluorescein leakage, and choroidal neovascularization (CNV). A neovascular AMD patient’s serum showed a significant increase in Hcy and a decrease in CBS. Hcy significantly increased HIF-1α, VEGF, and NMDAR in RPE cells, and Ki67 in MCEC. Hcy-injected WT mice showed disrupted retina and CNV. Knocking down RPE NMDAR improved retinal structure and CNV. Our findings underscore the role of RPE NMDAR in Hcy-induced AMD features; thus, NMDAR inhibition could serve as a promising therapeutic target for AMD.


2021 ◽  
Vol 6 (1) ◽  
pp. e000774
Author(s):  
Minwei Wang ◽  
Shiqi Su ◽  
Shaoyun Jiang ◽  
Xinghuai Sun ◽  
Jiantao Wang

Age-related macular degeneration (AMD) is the most common eye disease in elderly patients, which could lead to irreversible vision loss and blindness. Increasing evidence indicates that amyloid β-peptide (Aβ) might be associated with the pathogenesis of AMD. In this review, we would like to summarise the current findings in this field. The literature search was done from 1995 to Feb, 2021 with following keywords, ‘Amyloid β-peptide and age-related macular degeneration’, ‘Inflammation and age-related macular degeneration’, ‘Angiogenesis and age-related macular degeneration’, ‘Actin cytoskeleton and amyloid β-peptide’, ‘Mitochondrial dysfunction and amyloid β-peptide’, ‘Ribosomal dysregulation and amyloid β-peptide’ using search engines Pubmed, Google Scholar and Web of Science. Aβ congregates in subretinal drusen of patients with AMD and participates in the pathogenesis of AMD through enhancing inflammatory activity, inducing mitochondrial dysfunction, altering ribosomal function, regulating the lysosomal pathway, affecting RNA splicing, modulating angiogenesis and modifying cell structure in AMD. The methods targeting Aβ are shown to inhibit inflammatory signalling pathway and restore the function of retinal pigment epithelium cells and photoreceptor cells in the subretinal region. Targeting Aβ may provide a novel therapeutic strategy for AMD.


Sign in / Sign up

Export Citation Format

Share Document