scholarly journals Inhibitory Potential of New Phenolic Hydrazide-Hydrazones with a Decoy Substrate Fragment towards Laccase from a Phytopathogenic Fungus: SAR and Molecular Docking Studies

2021 ◽  
Vol 22 (22) ◽  
pp. 12307
Author(s):  
Halina Maniak ◽  
Michał Talma ◽  
Mirosław Giurg

Laccase from pathogenic fungi participates in both the delignification and neutralization of phytoantibiotics. Furthermore, it interferes with the hormone signaling in plants and catalyzes melanization. Infections of these pathogens contribute to loss in forestry, agriculture, and horticulture. As there is still a need to expand knowledge on efficient defense strategies against phytopathogenic fungi, the present study aimed to reveal more information on the molecular mechanisms of laccase inhibition with natural and natural-like carboxylic acid semi-synthetic derivatives. A set of hydrazide-hydrazones derived from carboxylic acids, generally including electron-rich arene units that serve as a decoy substrate, was synthesized and tested with laccase from Trametes versicolor. The classic synthesis of the title inhibitors proceeded with good to almost quantitative yield. Ninety percent of the tested molecules were active in the range of KI = 8–233 µM and showed different types of action. Such magnitude of inhibition constants qualified the hydrazide-hydrazones as strong laccase inhibitors. Molecular docking studies supporting the experimental data explained the selected derivatives’ interactions with the enzyme. The results are promising in developing new potential antifungal agents mitigating the damage scale in the plant cultivation, gardening, and horticulture sectors.

2019 ◽  
Vol 71 (7-8) ◽  
pp. 1800354 ◽  
Author(s):  
Sabrin Ragab Mohamed Ibrahim ◽  
Gamal Abdallah Mohamed ◽  
Maan Talaat Abdullah Khayat ◽  
Sahar Ahmed ◽  
Hany Abo‐Haded

2016 ◽  
Vol 126 ◽  
pp. 23-33 ◽  
Author(s):  
Abubakar Babando Aliyu ◽  
Neil Anthony Koorbanally ◽  
Brenda Moodley ◽  
Parvesh Singh ◽  
Hafizah Yousuf Chenia

2017 ◽  
Vol 139 ◽  
pp. 849-864 ◽  
Author(s):  
Bilquees Bano ◽  
Arshia ◽  
Khalid Mohammed Khan ◽  
Kanwal ◽  
Bibi Fatima ◽  
...  

Author(s):  
Raghvendra Dubey ◽  
Kushagra Dubey

Background: COVID-19 which is known as the novel coronavirus was reported in December 2019 in Wuhan city, China and many of the patients have been contaminated by environmental contamination and transmission from one human to another. Objective: The objective of work is to establish the inhibitory potential of nicotiflorin, a Kaempferol 3-O-rutinoside flavonoid, against the deadly coronavirus (COVID-19) 6W63 (main protease 3Clpro protein) , using molecular docking approach. Method: The Molegro Virtual Docker software (MVD) with a 30 Å grid resolution was used. The structure was drawn by Chem 3D software and energy minimization was done by the MM2 force field. The protein 6W63 was downloaded from the protein data bank. Molegro modeller was used for score calculations. Result: The molecular docking studies were carried out on nicotiflorin and standard inhibitor X77, where standard inhibitor was observed in a co-crystallized state with main protease 3Clpro protein 6W63. The MolDock score, Rerank Sore and H Bond score of nicotiflorin and standard inhibitor X77 was observed as -173.058, -127.302, -21.9398 and -156.913,- 121.296,-5.7369, respectively. Conclusion: Molecular docking studies have confirmed that the affinity of flavonoid nicotiflorin with the amino acids of the viral protein 6W63 was relatively more than the standard X77. For the effective treatment of novel coronavirus COVID-19, the effectiveness of the identified flavonoid nicotiflorin can further be evaluated for safety and efficacy parameters at both preclinical and clinical stages.


2019 ◽  
Vol 4 (20) ◽  
pp. 6181-6189 ◽  
Author(s):  
Nimra Naveed Shaikh ◽  
Shazia Iqbal ◽  
Naima Syed ◽  
Maria A. Khan ◽  
Syed Tarique Moin ◽  
...  

2020 ◽  
Author(s):  
Prashanth G ◽  
Basavaraj Vastrad ◽  
Anandkumar Tengli ◽  
Chanabasayya Vastrad ◽  
Iranna Kotturshetti

Abstract Background: Type 1 diabetes (T1D) is a serious threat to childhood life and has fairly complicated pathogenesis. Profound attempts have been made to enlighten the pathogenesis, but the molecular mechanisms of T1D are still not well known.Methods: To identify the candidate genes in the progression of T1D, Expression profiling by high throughput sequencing dataset GSE123658 was downloaded from Gene Expression Omnibus (GEO) database. The differentially expressed genes (DEGs) were identified, and gene ontology (GO) and pathway enrichment analyses were performed. The protein-protein interaction network (PPI), modules, target gene - miRNA regulatory network and target gene - TF regulatory network analysis were constructed and analyzed using HIPPIE, miRNet, NetworkAnalyst and Cytoscape. Finally, validation of hub genes was conducted by using ROC (Receiver operating characteristic) curve and RT-PCR analysis. Molecular docking studies were performed.Results: A total of 284 DEGs were identified, consisting of 142 up regulated genes and 142 down regulated genes. The gene ontology (GO) and pathways of the DEGs include cell-cell signaling, vesicle fusion, plasma membrane, signaling receptor activity, lipid binding, signaling by GPCR and innate immune system. Four hub genes were identified and biological process analysis revealed that these genes were mainly enriched in cell-cell signaling, cytokine signaling in immune system, signaling by GPCR and innate immune system. ROC curve and RT-PCR analysis showed that EGFR, GRIN2B, POLR2A and PRKACA might be involved in the advancement of T1D. Molecular docking studies showed high docking score.Conclusions: DEGs and hub genes identified in the present investigation help us understand the molecular mechanisms underlying the advancement of T1D, and provide candidate targets for diagnosis and treatment of T1D.


Author(s):  
Babatunde Joseph Oso ◽  
Ige Francis Olaoye

Abstract Background This study assessed the antiglycaemic properties of the methanolic extracts of the dried leaf of Cassia alata L. through in vitro and in silico approaches. The methanolic crude extract (MCE) of the dried leaf was prepared and partitioned into n-butanol (BPE) and aqueous (ARE) extracts. The antiglycaemic potential was assessed in vitro by studying the inhibitory actions of the extracts with α-amylase, α-glucosidase, and sucrase. The antiglycation capacity of the extracts was evaluated through the inhibition of albumin glycation, thiol oxidation, and β-fibril formation. Previously identified compounds (emodin, quercetin, chrysoeriol, and kaempferol) were docked with α-amylase (1HNY), α-glucosidase (5ZCB), and sucrase-isomaltase (3LPO) using the Pyrex Virtual Screening tool. Results The results revealed that MCE had the highest inhibitory potential with the lowest IC50 values of 69.67 ± 0.88, 65.54 ± 0.34, and 48.35 ± 1.45 μg/mL for α-amylase, α-glucosidase, and sucrase inhibitions, respectively. The molecular docking studies showed that quercetin and kaempferol had the best docking scores with 1HNY while emodin and chrysoeriol had the best scores towards 5ZCB and 3LPO. MCE and BPE significantly (p < 0.05) inhibited glucose-induced albumin glycation and modification. Conclusion This study suggested that the extract of the leaf of C. alata could contain a mix of different phytochemicals that could be beneficial in reducing the absorption of glucose and preventing diabetes-induced complications.


Sign in / Sign up

Export Citation Format

Share Document