scholarly journals Overexpression of an Osa-miR162a Derivative in Rice Confers Cross-Kingdom RNA Interference-Mediated Brown Planthopper Resistance without Perturbing Host Development

2021 ◽  
Vol 22 (23) ◽  
pp. 12652
Author(s):  
Wenzhong Shen ◽  
Shanni Cao ◽  
Jinhui Liu ◽  
Wenqing Zhang ◽  
Jie Chen ◽  
...  

Rice is a main food crop for more than half of the global population. The brown planthopper (BPH, Nilaparvata lugens) is one of the most destructive insect pests of rice. Currently, repeated overuse of chemical insecticides represents a common practice in agriculture for BPH control, which can induce insect tolerance and provoke environmental concerns. This situation calls for innovative and widely applicable strategies for rice protection against BPH. Here we report that the rice osa-miR162a can mediate cross-kingdom RNA interference (RNAi) by targeting the NlTOR (Target of rapamycin) gene of BPH that regulates the reproduction process. Through artificial diet or injection, osa-miR162a mimics repressed the NlTOR expression and impaired the oviposition of BPH adults. Consistently, overproduced osa-miR162a in transgenic rice plants compromised the fecundity of BPH adults fed with these plants, but meanwhile perturbed root and grain development. To circumvent this issue, we generated osa-miR162a-m1, a sequence-optimized osa-miR162a, by decreasing base complementarity to rice endogenous target genes while increasing base complementarity to NlTOR. Transgenic overexpression of osa-miR162a-m1 conferred rice resistance to BPH without detectable developmental penalty. This work reveals the first cross-kingdom RNAi mechanism in rice-BPH interactions and inspires a potentially useful approach for improving rice resistance to BPH. We also introduce an effective strategy to uncouple unwanted host developmental perturbation from desirable cross-kingdom RNAi benefits for overexpressed plant miRNAs.

1987 ◽  
Vol 109 (3) ◽  
pp. 609-610 ◽  
Author(s):  
G. S. V. Prasad ◽  
M. V. S. Sastry ◽  
J. R. K. Rao ◽  
A. Ghosh ◽  
Y. Kondala Rao

Brown planthopper, Nilaparvata lugens (Stal), is one of the most serious insect pests of rice (Oryza sativa L.) throughout Asia. Introduction of resistant varieties could be an effective means of minimizing losses from the pest. Several hundred rice cultivars resistant to the pest have been identified and the genetics of resistance has been analysed. Studies have shown that the genes for resistance to brown planthopper, bph-4, and to green leafhopper, Glh-3, are linked (Sidhu & Khush, 1979). Ideka & Kaneda (1983) reported that bph-2 for brown planthopper resistance was linked with the gene d2 for dwarfness. The present study sought to ascertain relationships between resistance to brown planthopper and tungro virus and grain characteristics.


2020 ◽  
Vol 17 (2) ◽  
pp. 97
Author(s):  
Andi Nurdaaniyah ◽  
Dadang Dadang ◽  
I Wayan Winasa

<p>Brown planthopper (<em>Nilaparvata lugens</em> (Stål)) is one of the major rice insect pests that is known to cause high loss of rice production. One of the strategies to control this pest is by using resistant rice varieties. The aim of this research was to study the resistance of IPB 3S variety to BPH by measuring BPH fecundity, sex ratio, feeding activity as well as population increase compared to Ciherang variety against brown planthopper (<em>N. lugens</em>). Fecundity test used a pair of BPH adult infested on 21 days after planting (DAP) of rice plants. Eggs laid in rice stalks and the rest of eggs in the ovary were counted. In order to know the change of sex ratio, a pair of BPH adults was infested on 30 DAP rice plants and allowed to lay eggs. The calculation of sex ratio was conducted at adult stage of BPH by segregation between male and female adults. Feeding activity of BPH was evaluated using ninhydrin and analyzed qualitatively using spectrophotometer. Ten fourth instar nymphs of BPH was infested on 30 DAP old of rice seedlings. Honeydew secreted by BPH was collected to filter paper sprayed with ninhydrin. Population increased test was conducted by infesting five pairs of BPH adults on 35 DAP old rice plants. Observations was conducted on nymph and adult stages. Each test was replicated 10 times. In general, IPB 3S is slightly resistant to BPH, compared to Ciherang variety. The feeding activity of BPH is higher in Ciherang compared to IPB3S. However, the fecundity and population increased of BPH in Ciherang is similar to IPB3S.</p>


Proceedings ◽  
2019 ◽  
Vol 36 (1) ◽  
pp. 11
Author(s):  
Jain ◽  
Robinson ◽  
Mitter

The whitefly, Bemisia tabaci (Hemiptera: Aleyrodidae) is a significant global pest of economically important vegetable, fibre, and ornamental crops. Whiteflies directly damage the plants by piercing and sucking essential nutrients, indirectly through honeydew secretion and by transmitting more than 200 plant viruses that cause millions of dollars in produce losses per year. Whitefly management is mostly reliant on the heavy use of chemical insecticides. However, this ultimately leads to increasing resistance development, detrimental effects on beneficial insects and biomagnification of ecologically harmful chemicals in the environment. Responding to consumer demands for more selective, less toxic, non-GM insect control strategies, RNA interference (RNAi) has emerged as a potential game-changing solution. The RNA interference (RNAi) is a homology-dependent mechanism of gene silencing that represents a feasible and sustainable technology for the management of insect pests. In the present study, twenty-two whitefly genes were selected based on their essential function in the insect and tested in artificial diet bioassays for mortality and gene silencing efficacy. The nine most effective dsRNA constructs showed moderate-to-high whitefly mortality as compared to negative controls six days post-feeding. qPCR analysis further demonstrated significant knockdown of target gene mRNA expression. Additionally, uptake and spread of fluorescently labelled dsRNA was evident beyond the midgut of the whitefly supporting the systemic spreading of RNAi effectors. Taken together, the oral delivery of dsRNA shows effective RNAi mediated gene silencing of target genes and offers a viable approach for the development of dsRNA biopesticides against hemipteran pest.


2010 ◽  
Vol 19 (6) ◽  
pp. 777-786 ◽  
Author(s):  
J. Chen ◽  
D. Zhang ◽  
Q. Yao ◽  
J. Zhang ◽  
X. Dong ◽  
...  

2020 ◽  
Author(s):  
Abhishek Ojha ◽  
Wenqing Zhang

AbstractInsect pests consume tastants as their necessary energy and nutrient sources. Gustatory receptors play important roles in insect life and can form within an extremely complicated regulatory network. However, there are still many gustatory genes that have a significant impact on insect physiology, but their functional mechanism is still unknown. Here, we purified and characterized a gustatory receptor (protein) coding gene, NlGr7, from the brown planthopper (BPH) Nilaparvata lugens, which is an important insect pest of rice. Our results revealed that NlGr7 has an active association with various ligands, such as lectins, lipids (phospho- and sphingolipid) and copper. The mass-spectrometry result showed that NlGr7 is a sugar receptor, and NlGr7 is validated by different types of insoluble polysaccharides and a varied range of tastants. Furthermore, we observed that NlGr7-bound ATP hydrolysed on the ATPase activity assay, which indicated that NlGr7 may be associated with important biological functions in the BPH. The important NlGr7 for chemoreception has now been characterized in the BPH. We showed that NlGr7 in the BPH is required for various protein-ligands, as well as protein-sugars interactions, to play crucial roles in this pest. This study will provide valuable information for further functional studies of chemoreception mechanisms in this important agricultural pest.


Insects ◽  
2020 ◽  
Vol 11 (9) ◽  
pp. 642
Author(s):  
Lu-Yao Peng ◽  
Zhen-Wei Dai ◽  
Rui-Rui Yang ◽  
Zhen Zhu ◽  
Wei Wang ◽  
...  

The brown planthopper Nilaparvata lugens is a typical monophagous insect herbivore that feeds exclusively on rice sap. This insect pest causes serious damage to rice crops throughout East Asian countries. Chemical control remains the first choice for managing N. lugens populations; however, the use of insecticides has given rise to planthopper resurgence and additional environmental risks. Nilaparvata lugens is a model insect of Hemiptera because its whole genome sequence has been elucidated and is susceptible to RNA interference. In this study, our findings revealed that a superoxide-generating gene, NADPH oxidase 5 (Nox5), is essential for molting and oviposition in a Hemipteran insect Nilaparvata lugens. Knockdown of Nox5 transcript levels by RNA interference in 2nd–5th-instar nymphs results in significantly lethal deficits in the molting transitions from nymph–nymph and nymph–adult. Nox5 knockdown leads to a reduction of hydrogen peroxide in female ovaries and failure of oviposition from the insect ovipositor into the rice leaf sheath. Here, we provide in vivo evidence demonstrating that Nox5 is a key enzyme for regulating molting and oviposition in this insect species.


2018 ◽  
Vol 112 (4) ◽  
pp. 330-339 ◽  
Author(s):  
Anamika Sharma ◽  
Govinda Shrestha ◽  
Gadi V P Reddy

Abstract Trap crops are plants grown along with the main crop in order to manipulate insect behavior to manage the insect pests and are used as a cultural management strategy in several crops. Trap crops also provide habitat to natural enemies and can reduce the need for insecticides and hence reduce the development of insecticide resistance. The attractiveness of the trap crop, the timing of planting, and the space it occupies are major factors to consider before selecting and using a trap crop. The addition of semiochemicals and incorporation of ‘stimulo-deterrent diversion’ can increase the efficiency of trap crops. The important insect pests of cereal crops reported to managed by using trap crops include the wheat stem sawfly, Cephus cinctus Norton (Hymenoptera: Cephidae), on wheat and the stem borers Chilo partellus (Swinhoe) and Busseola fusca (Fuller) on maize and sorghum. Other insect pests such as soil-dwelling wireworms [Agriotes obscurus L., Limonius californicus (Mannerheim) (Coleoptera: Elateridae)] on potatoes and the aphids Schizaphis graminum (Rondani) (Hemiptera: Aphididae), and Rhopalosiphum padi L. on wheat and the brown planthopper Nilaparvata lugens (Stål) on rice are also possible to manage by using trap crops. Cereal crops such as maize and wheat are sometimes themselves used as trap crops, yet there have been only a handful of attempts made to use trap crops in cereal crops. The major limiting factors in using trap crops in cereal crops are environmental conditions, variation in landscape and cultivation practices. Nonetheless, trap crops remain an important tool of integrated pest management, and future studies should work to improve the efficacy, cost efficiency, and availability of alternative trap crops for use in cereal cultivation.


Sign in / Sign up

Export Citation Format

Share Document