scholarly journals A Conserved Allosteric Site on Drug-Metabolizing CYPs: A Systematic Computational Assessment

2021 ◽  
Vol 22 (24) ◽  
pp. 13215
Author(s):  
André Fischer ◽  
Martin Smieško

Cytochrome P450 enzymes (CYPs) are the largest group of enzymes involved in human drug metabolism. Ligand tunnels connect their active site buried at the core of the membrane-anchored protein to the surrounding solvent environment. Recently, evidence of a superficial allosteric site, here denoted as hotspot 1 (H1), involved in the regulation of ligand access in a soluble prokaryotic CYP emerged. Here, we applied multi-scale computational modeling techniques to study the conservation and functionality of this allosteric site in the nine most relevant mammalian CYPs responsible for approximately 70% of drug metabolism. In total, we systematically analyzed over 44 μs of trajectories from conventional MD, cosolvent MD, and metadynamics simulations. Our bioinformatic analysis and simulations with organic probe molecules revealed the site to be well conserved in the CYP2 family with the exception of CYP2E1. In the presence of a ligand bound to the H1 site, we could observe an enlargement of a ligand tunnel in several members of the CYP2 family. Further, we could detect the facilitation of ligand translocation by H1 interactions with statistical significance in CYP2C8 and CYP2D6, even though all other enzymes except for CYP2C19, CYP2E1, and CYP3A4 presented a similar trend. As the detailed comprehension of ligand access and egress phenomena remains one of the most relevant challenges in the field, this work contributes to its elucidation and ultimately helps in estimating the selectivity of metabolic transformations using computational techniques.

2021 ◽  
Vol 7 (12) ◽  
pp. eabc9800
Author(s):  
Ryan J. Gallagher ◽  
Jean-Gabriel Young ◽  
Brooke Foucault Welles

Core-periphery structure, the arrangement of a network into a dense core and sparse periphery, is a versatile descriptor of various social, biological, and technological networks. In practice, different core-periphery algorithms are often applied interchangeably despite the fact that they can yield inconsistent descriptions of core-periphery structure. For example, two of the most widely used algorithms, the k-cores decomposition and the classic two-block model of Borgatti and Everett, extract fundamentally different structures: The latter partitions a network into a binary hub-and-spoke layout, while the former divides it into a layered hierarchy. We introduce a core-periphery typology to clarify these differences, along with Bayesian stochastic block modeling techniques to classify networks in accordance with this typology. Empirically, we find a rich diversity of core-periphery structure among networks. Through a detailed case study, we demonstrate the importance of acknowledging this diversity and situating networks within the core-periphery typology when conducting domain-specific analyses.


2010 ◽  
Vol 9 (1) ◽  
pp. 55-69 ◽  
Author(s):  
Christopher D. Shaffer ◽  
Consuelo Alvarez ◽  
Cheryl Bailey ◽  
Daron Barnard ◽  
Satish Bhalla ◽  
...  

Genomics is not only essential for students to understand biology but also provides unprecedented opportunities for undergraduate research. The goal of the Genomics Education Partnership (GEP), a collaboration between a growing number of colleges and universities around the country and the Department of Biology and Genome Center of Washington University in St. Louis, is to provide such research opportunities. Using a versatile curriculum that has been adapted to many different class settings, GEP undergraduates undertake projects to bring draft-quality genomic sequence up to high quality and/or participate in the annotation of these sequences. GEP undergraduates have improved more than 2 million bases of draft genomic sequence from several species of Drosophila and have produced hundreds of gene models using evidence-based manual annotation. Students appreciate their ability to make a contribution to ongoing research, and report increased independence and a more active learning approach after participation in GEP projects. They show knowledge gains on pre- and postcourse quizzes about genes and genomes and in bioinformatic analysis. Participating faculty also report professional gains, increased access to genomics-related technology, and an overall positive experience. We have found that using a genomics research project as the core of a laboratory course is rewarding for both faculty and students.


Author(s):  
Stanley S Levinson

Abstract Background Classical statistics were developed in a time when small sample sizes were the norm; thus, statistical significance typically ensured large clinical effects. Over the past 10–20 years, computational techniques have allowed studies with modest effects to reach statistical significance (usually P < 0.05) by analyzing very large numbers of patients. In this review, I discuss how this came about and provide an intuitive understanding of the strengths and weaknesses of various statistical parameters that provide insight into clinical effect sizes. Content In this review of the literature, a simple web-based program was used for calculations. Examples are shown. Odds and risk ratios are compared with ROC curves to allow better understanding of their predictive value. Summary In these complex times, an intuitive understanding of statistical procedures is increasingly important. This review will attempt to advance the reader’s knowledge so that one can calculate the number needed to treat and its confidence interval, understand the meaning of a modest association, and determine when a study is likely to be accurate but with questionable clinical utility.


Author(s):  
Masahiro Nakashima ◽  
Hui Li ◽  
Takahide Tabata ◽  
Tsutomu Nozaki

The flow feature of the jet issuing from the circular pipe with the rotating inclined section has been investigated by the method of the flow visualization and the image processing. It has been found that the jet diffusion is affected by the inclined angle and the rotating speed. The coherent structure of the jet has been also studied by using the wavelet multi-resolution analysis. The multi-scale turbulent structures were visualized and the core and edge of the vortex were identified at different broad scales.


2009 ◽  
Vol 16 (1) ◽  
pp. 65-76 ◽  
Author(s):  
C. Franzke

Abstract. The multi-scale nature and climate noise properties of teleconnection indices are examined by using the Empirical Mode Decomposition (EMD) procedure. The EMD procedure allows for the analysis of non-stationary time series to extract physically meaningful intrinsic mode functions (IMF) and nonlinear trends. The climatologically relevant monthly mean teleconnection indices of the North Atlantic Oscillation (NAO), the North Pacific index (NP) and the Southern Annular Mode (SAM) are analyzed. The significance of IMFs and trends are tested against the null hypothesis of climate noise. The analysis of surrogate monthly mean time series from a red noise process shows that the EMD procedure is effectively a dyadic filter bank and the IMFs (except the first IMF) are nearly Gaussian distributed. The distribution of the variance contained in IMFs of an ensemble of AR(1) simulations is nearly χ2 distributed. To test the statistical significance of the IMFs of the teleconnection indices and their nonlinear trends we utilize an ensemble of corresponding monthly averaged AR(1) processes, which we refer to as climate noise. Our results indicate that most of the interannual and decadal variability of the analysed teleconnection indices cannot be distinguished from climate noise. The NP and SAM indices have significant nonlinear trends, while the NAO has no significant trend when tested against a climate noise hypothesis.


2019 ◽  
Vol 11 (11) ◽  
pp. 1349 ◽  
Author(s):  
Guangjun Xu ◽  
Cheng Cheng ◽  
Wenxian Yang ◽  
Wenhong Xie ◽  
Lingmei Kong ◽  
...  

Oceanic eddies play an important role in global energy and material transport, and contribute greatly to nutrient and phytoplankton distribution. Deep learning is employed to identify oceanic eddies from sea surface height anomalies data. In order to adapt to segmentation problems for multi-scale oceanic eddies, the pyramid scene parsing network (PSPNet), which is able to satisfy the fusion of semantics and details, is applied as the core algorithm in the eddy detection methods. The results of eddies identified from this artificial intelligence (AI) method are well compared with those from a traditional vector geometry-based (VG) method. More oceanic eddies are detected by the AI algorithm than the VG method, especially for small-scale eddies. Therefore, the present study demonstrates that the AI algorithm is applicable of oceanic eddy detection. It is one of the first few of efforts to bridge AI techniques and oceanography research.


Sign in / Sign up

Export Citation Format

Share Document