scholarly journals Immunosenescence in Choroidal Neovascularization (CNV)—Transcriptional Profiling of Naïve and CNV-Associated Retinal Myeloid Cells during Aging

2021 ◽  
Vol 22 (24) ◽  
pp. 13318
Author(s):  
Anja Schlecht ◽  
Adrian Thien ◽  
Julian Wolf ◽  
Gabriele Prinz ◽  
Hansjürgen Agostini ◽  
...  

Immunosenescence is considered a possible factor in the development of age-related macular degeneration and choroidal neovascularization (CNV). However, age-related changes of myeloid cells (MCs), such as microglia and macrophages, in the healthy retina or during CNV formation are ill-defined. In this study, Cx3cr1-positive MCs were isolated by fluorescence-activated cell sorting from six-week (young) and two-year-old (old) Cx3cr1GFP/+ mice, both during physiological aging and laser-induced CNV development. High-throughput RNA-sequencing was performed to define the age-dependent transcriptional differences in MCs during physiological aging and CNV development, complemented by immunohistochemical characterization and the quantification of MCs, as well as CNV size measurements. These analyses revealed that myeloid cells change their transcriptional profile during both aging and CNV development. In the steady state, senescent MCs demonstrated an upregulation of factors contributing to cell proliferation and chemotaxis, such as Cxcl13 and Cxcl14, as well as the downregulation of microglial signature genes. During CNV formation, aged myeloid cells revealed a significant upregulation of angiogenic factors such as Arg1 and Lrg1 concomitant with significantly enlarged CNV and an increased accumulation of MCs in aged mice in comparison to young mice. Future studies need to clarify whether this observation is an epiphenomenon or a causal relationship to determine the role of immunosenescence in CNV formation.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Steven Droho ◽  
Harris Perlman ◽  
Jeremy A. Lavine

AbstractAge-related macular degeneration (AMD) is genetically associated with complement. Dendritic cells (DCs) play key roles during innate and adaptive immunity, and express complement components and their receptors. We investigated ocular DC heterogeneity and the role of DCs in the laser-induced choroidal neovascularization (CNV) model. In order to determine the function of DCs, we used two models of DC deficiency: the Flt3−/− and Flt3l−/− mouse. We identified three types of ocular DCs: plasmacytoid DC, classical DC-1, and classical DC-2. At steady-state, classical DCs were found in the iris and choroid but were not detectable in the retina. Plasmacytoid DCs existed at very low levels in iris, choroid, and retina. After laser injury, the number of each DC subset was up-regulated in the choroid and retina. In Flt3−/− mice, we found reduced numbers of classical DCs at steady-state, but each DC subset equally increased after laser injury between wildtype and Flt3−/− mice. In Flt3l−/− mice, each DC subsets was severely reduced after laser injury. Neither Flt3−/− or Flt3l−/− mice demonstrated reduced CNV area compared to wildtype mice. DCs do not play any significant role during the laser-induced CNV model of neovascular AMD.


Retina ◽  
2003 ◽  
Vol 23 (6) ◽  
pp. 800-807 ◽  
Author(s):  
THEKLA PAPADAKI ◽  
MILTIADIS TSILIMBARIS ◽  
KYRIAKI THERMOS ◽  
MARIETA KARAVELLAS ◽  
DIMITRIOS SAMONAKIS ◽  
...  

2020 ◽  
Vol 4 (Supplement_1) ◽  
pp. 118-119
Author(s):  
Kate Foley ◽  
Peter Borchian ◽  
Dylan Garceau ◽  
Kevin Kotredes ◽  
Paul Territo ◽  
...  

Abstract Cerebrovascular decline occurs during aging and may be critical during prodromal phases of Alzheimer’s disease (AD). The E4 allele of apolipoprotein E (APOE4) is the greatest genetic risk factor for AD and decreased longevity and studies suggest APOE4 increases risk for age-dependent cerebrovascular damage. To study the relationship between APOE4 and age-related cerebrovascular decline, male and female C57BL/6J (B6) mice carrying combinations of APOE alleles including APOE4 (risk) and APOE3 (neutral), as well as B6 controls were assessed at a variety of ages from 4 to 24 mos for cognitive ability, biometrics and cerebrovascular health including i) PET/MRI using 64Cu-PTSM (perfusion) and 18F-FDG (metabolism), ii) transcriptional profiling and iii) immunofluorescence. Despite no cognitive decline, male APOE4 mice showed hypo-perfusion and hypo-metabolism by 12 mos, while female APOE4 mice showed an uncoupled hyper-perfusion and hypo-metabolism phenotype. Transcriptional profiling showed differential expression of genes involved in regulation of cerebral perfusion, glucose transportation and metabolism in APOE4 mice. An age-dependent blood brain barrier compromise was also apparent in the brains of female APOE4 mice. Physical activity reduces risk for human AD and our data shows exercise improves cerebrovascular health in mice. However, the effects to cerebrovascular health in individuals carrying genetic risk factors such as APOE4 are not known. To determine whether exercise can overcome APOE4-dependent cerebrovascular damage, APOE mice are being exercised from 2-4 and to 2-12 mos. Transcriptional profiling and immunofluorescence will determine whether the benefits of exercise to the cerebrovasculature are modulated by genetic risk factors such as APOE4.


2021 ◽  
Vol 15 ◽  
Author(s):  
Juhee Kim ◽  
Jong-Heon Kim ◽  
Ji Yeon Do ◽  
Jung Yi Lee ◽  
Ryoji Yanai ◽  
...  

Age-related macular degeneration (AMD), especially neovascular AMD with choroidal neovascularization (CNV), is the leading cause of blindness in the elderly. Although matrix metalloproteinases (MMPs) are involved in pathological ocular angiogenesis, including CNV, the cellular origin of MMPs in AMD remains unknown. The present study investigated the role of microglial MMPs in CNV. MMP activities were analyzed by gelatin zymography in aqueous humor samples from patients with CNV and laser-induced CNV mice. Active MMP-9 was increased in the aqueous humor samples from neovascular AMD patients compared with control subjects. In the retinal pigment epithelium (RPE)/choroid from CNV mice, active MMP-9 increased, beginning 1 h post-CNV induction, and remained upregulated until Day 7. In RPE/choroid from CNV mice, active MMP-9 was suppressed by minocycline, a known microglial inhibitor, at 6 h and 1-day post-CNV induction. Flow cytometry revealed that the proportion of activated microglia increased very early, beginning at 1 h post-CNV induction, and was maintained until Day 7. Similarly, immunohistochemistry revealed increased microglial activation and MMP-9 expression on CNV lesions at 6 h and 1-day post-CNV induction. SB-3CT, an MMP inhibitor, decreased vascular leakage and lesion size in laser-induced CNV mice. These findings indicated nearly immediate recruitment of activated microglia and very early MMP-9 activation in the RPE/choroid. The present study newly identified a potential role for early microglial MMP-9 expression in CNV, and furthermore that modulating microglial MMP expression is a novel putative therapeutic for CNV.


Author(s):  
Anja Schlecht ◽  
Peipei Zhang ◽  
Julian Wolf ◽  
Adrian Thien ◽  
Dennis-Dominik Rosmus ◽  
...  

Age-related macular degeneration (AMD) represents the most common cause of blindness in the elderly in the Western world. An impairment of the outer blood-retina barrier and a localized inflammatory microenvironment cause sprouting of choroidal neovascular membranes (CNV) in neovascular AMD that are in intimate contact with surrounding myeloid cells, such as retinal microglia, and ultimately lead to visual impairment. The discovery of novel target molecules to interfere with angiogenesis and inflammation is vital for future treatment approaches in AMD patients. To explore the transcriptional profile and the function of retinal microglia at sites of CNV, we performed a comprehensive RNA-seq analysis of retinal microglia in the mouse model of laser-induced choroidal neovascularization (mCNV). Here, we identified the angiogenic factor Osteopontin (Opn), also known as “secreted phosphoprotein 1” (Spp1), as one of the most highly expressed genes in retinal microglia in the course of CNV formation. We confirmed the presence of SPP1 at the lesion site in recruited retinal microglia in Cx3cr1CreER:Rosa26-tdTomato reporter mice by confocal microscopy and in whole retinal tissue lysates by ELISA highlighting a massive local production of SPP1. Inhibition of SPP1 by intravitreal injection of an anti-SPP1 antibody significantly increased the lesion size compared to IgG-treated control eyes. In line with our results in rodents, we found an increased SPP1 mRNA expression in surgically extracted human choroidal neovascular (hCNV) membranes by the quantitative RNA-seq approach of massive analysis of cDNA ends (MACE). Numerous IBA1+SPP1+ myeloid cells were detected in human CNV membranes. Taken together, these results highlight the importance of SPP1 in the formation of CNV and potentially offer new opportunities for therapeutic intervention by modulating the SPP1 pathway.


2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Kei Takahashi ◽  
Shinsuke Nakamura ◽  
Wataru Otsu ◽  
Masamitsu Shimazawa ◽  
Hideaki Hara

Abstract Background Age-related macular degeneration (AMD) is the principal cause of permanent blindness among elderly individuals worldwide. Chronic inflammation in the subretinal space is associated with a progression of exudative AMD. Progranulin (PGRN) is a growth factor secreted from myeloid cells and plays an important role in controlling the lysosomal function. A deficiency in PGRN leads to inflammation of the neurons in the central nervous system. The purpose of this study was to investigate the role played by PGRN in the size of the choroidal neovascularization (CNV) in laser-induced CNV mice. Methods CNVs were induced in C57BL/6J mice by laser photocoagulation of the retina. The expression of PGRN and the accumulation of Iba-1+ cells around the sites of the CNVs were determined. Grn−/−, Grn+/−, and Grn+/+ mice with laser-induced CNVs were also studied. To evaluate the effect of macrophages on the inflammation, we used a macrophage cell line (RAW264.7) in which the expression of PGRN was knocked down by RNA interference and peritoneal macrophages derived from Grn−/− and Grn+/+ mice. These cells were incubated under hypoxic conditions (1% O2). Results Iba-1+ myeloid cells migrated and accumulated in the photocoagulation-induced CNV areas, and the CNV lesions secreted high levels of PGRN in Grn+/+ mice. The size of the CNVs was larger in Grn−/− mice than in Grn+/− and Grn+/+ mice. In Grn−/− mice, the number of ocular-infiltrating Iba-1+ cells around the CNV was higher, and these cells produced more VEGF-A than the cells in the Grn+/+ mice. PGRN-silencing of RAW264.7 cells led to abnormal activation of the cells. In addition, hypoxic conditions promoted the production of proangiogenic and proinflammatory cytokines from PGRN-deficient macrophages. Interestingly, the expression level of lysosome-associated proteins and the number of activated lysosomes increased in PGRN-deficient macrophages. Conclusions These findings indicate that PGRN deficiency in Iba-1+ cells activates the lysosomal function that then leads to abnormal inflammation. The aberrant activation of Iba-1+ myeloid cells might contribute to the progression of the CNV and the regulation of these cells might be a novel therapeutic target for exudative AMD.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Donita L. Garland ◽  
Eric A. Pierce ◽  
Rosario Fernandez-Godino

AbstractThe complement system plays a role in the formation of sub-retinal pigment epithelial (RPE) deposits in early stages of age-related macular degeneration (AMD). But the specific mechanisms that connect complement activation and deposit formation in AMD patients are unknown, which limits the development of efficient therapies to reduce or stop disease progression. We have previously demonstrated that C3 blockage prevents the formation of sub-RPE deposits in a mouse model of EFEMP1-associated macular degeneration. In this study, we have used double mutant Efemp1R345W/R345W:C5-/- mice to investigate the role of C5 in the formation of sub-RPE deposits in vivo and in vitro. The data revealed that the genetic ablation of C5 does not eliminate the formation of sub-RPE deposits. Contrarily, the absence of C5 in RPE cultures promotes complement dysregulation that results in increased activation of C3, which likely contributes to deposit formation even in the absence of EFEMP1-R345W mutant protein. The results also suggest that genetic ablation of C5 alters the extracellular matrix turnover through an effect on matrix metalloproteinases in RPE cell cultures. These results confirm that C3 rather than C5 could be an effective therapeutic target to treat early AMD.


Sign in / Sign up

Export Citation Format

Share Document