scholarly journals Whole Exome Sequencing-Based Identification of a Novel Gene Involved in Root Hair Development in Barley (Hordeum vulgare L.)

2021 ◽  
Vol 22 (24) ◽  
pp. 13411
Author(s):  
Katarzyna Gajek ◽  
Agnieszka Janiak ◽  
Urszula Korotko ◽  
Beata Chmielewska ◽  
Marek Marzec ◽  
...  

Root hairs play a crucial role in anchoring plants in soil, interaction with microorganisms and nutrient uptake from the rhizosphere. In contrast to Arabidopsis, there is a limited knowledge of root hair morphogenesis in monocots, including barley (Hordeum vulgare L.). We have isolated barley mutant rhp1.e with an abnormal root hair phenotype after chemical mutagenesis of spring cultivar ‘Sebastian’. The development of root hairs was initiated in the mutant but inhibited at the very early stage of tip growth. The length of root hairs reached only 3% of the length of parent cultivar. Using a whole exome sequencing (WES) approach, we identified G1674A mutation in the HORVU1Hr1G077230 gene, located on chromosome 1HL and encoding a cellulose synthase-like C1 protein (HvCSLC1) that might be involved in the xyloglucan (XyG) synthesis in root hairs. The identified mutation led to the retention of the second intron and premature termination of the HvCSLC1 protein. The mutation co-segregated with the abnormal root hair phenotype in the F2 progeny of rhp1.e mutant and its wild-type parent. Additionally, different substitutions in HORVU1Hr1G077230 were found in four other allelic mutants with the same root hair phenotype. Here, we discuss the putative role of HvCSLC1 protein in root hair tube elongation in barley.

2017 ◽  
Vol 2017 ◽  
pp. 1-7 ◽  
Author(s):  
Hao Zhan ◽  
Jiahao Jiang ◽  
Qiman Sun ◽  
Aiwu Ke ◽  
Jinwu Hu ◽  
...  

Background. Hepatocellular carcinoma (HCC) ranks as the third leading cause of cancer-related mortality in China with increasing incidence. This study is designed to explore early genetic changes implicated in HCC tumorigenesis and progression by whole-exome sequencing. Methods. We firstly sequenced the whole exomes of 5 paired hepatitis B virus-related early-stage HCC and peripheral blood samples, followed by gene ontological analysis and pathway analysis of the single-nucleotide variants discovered. Then, the mutations of high frequency were further confirmed by Sanger sequencing. Results. We identified a mutational signature of dominant T:A>A:T transversion in early HCC and significantly enriched pathways including ECM-receptor interaction, axon guidance, and focal adhesion and enriched biological processes containing cell adhesion, axon guidance, and regulation of pH. Eight genes, including MUC16, UNC79, USH2A, DNAH17, PTPN13, TENM4, PCLO, and PDE1C, were frequently mutated. Conclusions. This study reveals a mutational profile and a distinct mutation signature of T:A>A:T transversion in early-stage HCC with HBV infection, which will enrich our understanding of genetic characteristics of the early-stage HCC.


Author(s):  
Emma Burak ◽  
John N Quinton ◽  
Ian C Dodd

Abstract Background and Aims Rhizosheaths are defined as the soil adhering to the root system after it is extracted from the ground. Root hairs and mucilage (root exudates) are key root traits involved in rhizosheath formation, but to better understand the mechanisms involved their relative contributions should be distinguished. Methods The ability of three species [barley (Hordeum vulgare), maize (Zea mays) and Lotus japonicus (Gifu)] to form a rhizosheath in a sandy loam soil was compared with that of their root-hairless mutants [bald root barley (brb), maize root hairless 3 (rth3) and root hairless 1 (Ljrhl1)]. Root hair traits (length and density) of wild-type (WT) barley and maize were compared along with exudate adhesiveness of both barley and maize genotypes. Furthermore, root hair traits and exudate adhesiveness from different root types (axile versus lateral) were compared within the cereal species. Key Results Per unit root length, rhizosheath size diminished in the order of barley > L. japonicus > maize in WT plants. Root hairs significantly increased rhizosheath formation of all species (3.9-, 3.2- and 1.8-fold for barley, L. japonicus and maize, respectively) but there was no consistent genotypic effect on exudate adhesiveness in the cereals. While brb exudates were more and rth3 exudates were less adhesive than their respective WTs, maize rth3 bound more soil than barley brb. Although both maize genotypes produced significantly more adhesive exudate than the barley genotypes, root hair development of WT barley was more extensive than that of WT maize. Thus, the greater density of longer root hairs in WT barley bound more soil than WT maize. Root type did not seem to affect rhizosheath formation, unless these types differed in root length. Conclusions When root hairs were present, greater root hair development better facilitated rhizosheath formation than root exudate adhesiveness. However, when root hairs were absent root exudate adhesiveness was a more dominant trait.


2016 ◽  
Author(s):  
Humam Kadara ◽  
Murim Choi ◽  
Jiexin Zhang ◽  
Edwin Parra Cuentas ◽  
Jaime Rodriguez Canales ◽  
...  

2016 ◽  
Vol 76 (16) ◽  
pp. 4765-4774 ◽  
Author(s):  
Katja Harbst ◽  
Martin Lauss ◽  
Helena Cirenajwis ◽  
Karolin Isaksson ◽  
Frida Rosengren ◽  
...  

2017 ◽  
Vol 28 (1) ◽  
pp. 75-82 ◽  
Author(s):  
H Kadara ◽  
M Choi ◽  
J. Zhang ◽  
E.R. Parra ◽  
J. Rodriguez-Canales ◽  
...  

2018 ◽  
Vol 29 (4) ◽  
pp. 1072 ◽  
Author(s):  
H. Kadara ◽  
M. Choi ◽  
J. Zhang ◽  
E.R. Parra ◽  
J. Rodriguez-Canales ◽  
...  

2014 ◽  
Vol 62 (S 02) ◽  
Author(s):  
M. Hitz ◽  
S. Al-Turki ◽  
A. Schalinski ◽  
U. Bauer ◽  
T. Pickardt ◽  
...  

2018 ◽  
Author(s):  
Yasemin Dincer ◽  
Michael Zech ◽  
Matias Wagner ◽  
Nikolai Jung ◽  
Volker Mall ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document