scholarly journals Neuroprotective Effect of Glatiramer Acetate on Neurofilament Light Chain Leakage and Glutamate Excess in an Animal Model of Multiple Sclerosis

2021 ◽  
Vol 22 (24) ◽  
pp. 13419
Author(s):  
Rina Aharoni ◽  
Raya Eilam ◽  
Shaul Lerner ◽  
Efrat Shavit-Stein ◽  
Amir Dori ◽  
...  

Axonal and neuronal pathologies are a central constituent of multiple sclerosis (MS) and its animal model, experimental autoimmune encephalomyelitis (EAE), induced by the myelin oligodendrocyte glycoprotein (MOG) 35–55 peptide. In this study, we investigated neurodegenerative manifestations in chronic MOG 35–55 induced EAE and the effect of glatiramer acetate (GA) treatment on these manifestations. We report that the neuronal loss seen in this model is not attributed to apoptotic neuronal cell death. In EAE-affected mice, axonal damage prevails from the early disease phase, as revealed by analysis of neurofilament light (NFL) leakage into the sera along the disease duration, as well as by immunohistological examination. Elevation of interstitial glutamate concentrations measured in the cerebrospinal fluid (CSF) implies that glutamate excess plays a role in the damage processes inflicted by this disease. GA applied as a therapeutic regimen to mice with apparent clinical symptoms significantly reduces the pathological manifestations, namely apoptotic cell death, NFL leakage, histological tissue damage, and glutamate excess, thus corroborating the neuroprotective consequences of this treatment.

2021 ◽  
Vol 14 ◽  
pp. 175628642110019
Author(s):  
Sinah Engel ◽  
Maria Protopapa ◽  
Falk Steffen ◽  
Vakis Papanastasiou ◽  
Christoforos Nicolaou ◽  
...  

Background: Serum neurofilament light chain (sNfL) is a promising biomarker to complement the decision-making process in multiple sclerosis (MS) patients. However, although sNfL levels are able to detect disease activity and to predict future disability, the growing evidence has not yet been translated into practicable recommendations for an implementation into clinical routine. Methods: The observation of a patient with extensive inflammatory activity in magnetic resonance imaging (MRI) along with an extremely high sNfL level in the absence of any clinical symptoms prompted us to investigate common characteristics of our MS patients with the highest sNfL levels in a retrospective cohort study. The 97.5th percentile was chosen as a cut-off value because the mean sNfL level of the resulting extreme neurofilament light chain (NfL) cohort corresponded well to the sNfL level of the presented case. Patient characterization included clinical and MRI assessment with a focus on disease activity markers. sNfL levels were determined by single molecule array. Results: The 97.5th percentile of our MS cohort (958 sNfL measurements in 455 patients) corresponded to a threshold value of 46.1 pg/ml. The mean sNfL level of the extreme sNfL cohort ( n = 24) was 95.6 pg/ml (standard deviation 68.4). Interestingly, only 15 patients suffered from a relapse at the time point of sample collection, whereas nine patients showed no signs of clinical disease activity. sNfL levels of patients with and without relapse did not differ [median 81.3 pg/ml (interquartile range [IQR] 48.0–128) versus 80.2 pg/ml (IQR 46.4–97.6), p = 0.815]. The proportion of patients with contrast-enhancing lesions was high and also did not differ between patients with and without relapse (92.9% versus 87.5%, p = 0.538); 78.9% of the patients not receiving a high-efficacious therapy had ongoing disease activity during a 2-year follow-up. Conclusion: Extremely high sNfL levels are indicative of subclinical disease activity and might complement treatment decisions in ambiguous cases.


2019 ◽  
Vol 31 ◽  
pp. 59-61 ◽  
Author(s):  
Keith R. Edwards ◽  
Lore Garten ◽  
Judy Button ◽  
Judy O'Connor ◽  
Vineetha Kamath ◽  
...  

2021 ◽  
Vol 14 ◽  
pp. 175628642110034
Author(s):  
Caspar B. Seitz ◽  
Falk Steffen ◽  
Muthuraman Muthuraman ◽  
Timo Uphaus ◽  
Julia Krämer ◽  
...  

Background: Serum neurofilament light chain (sNfL) and distinct intra-retinal layers are both promising biomarkers of neuro-axonal injury in multiple sclerosis (MS). We aimed to unravel the association of both markers in early MS, having identified that neurofilament has a distinct immunohistochemical expression pattern among intra-retinal layers. Methods: Three-dimensional (3D) spectral domain macular optical coherence tomography scans and sNfL levels were investigated in 156 early MS patients (female/male: 109/47, mean age: 33.3 ± 9.5 years, mean disease duration: 2.0 ± 3.3 years). Out of the whole cohort, 110 patients had no history of optic neuritis (NHON) and 46 patients had a previous history of optic neuritis (HON). In addition, a subgroup of patients ( n = 38) was studied longitudinally over 2 years. Support vector machine analysis was applied to test a regression model for significant changes. Results: In our cohort, HON patients had a thinner outer plexiform layer (OPL) volume compared to NHON patients ( B = −0.016, SE = 0.006, p = 0.013). Higher sNfL levels were significantly associated with thinner OPL volumes in HON patients ( B = −6.734, SE = 2.514, p = 0.011). This finding was corroborated in the longitudinal subanalysis by the association of higher sNfL levels with OPL atrophy ( B = 5.974, SE = 2.420, p = 0.019). sNfL levels were 75.7% accurate at predicting OPL volume in the supervised machine learning. Conclusions: In summary, sNfL levels were a good predictor of future outer retinal thinning in MS. Changes within the neurofilament-rich OPL could be considered as an additional retinal marker linked to MS neurodegeneration.


2019 ◽  
Vol 90 (9) ◽  
pp. 1059-1067 ◽  
Author(s):  
Sarah-Jane Martin ◽  
Sarah McGlasson ◽  
David Hunt ◽  
James Overell

ObjectiveNeurofilament is a biomarker of axonal injury proposed as a useful adjunct in the monitoring of patients with multiple sclerosis (MS). We conducted a systematic review and meta-analysis of case–control studies that have measured neurofilament light chain (NfL) levels in cerebrospinal fluid (CSF) of people with MS (pwMS), in order to determine whether, and to what degree, CSF NfL levels differentiate MS from controls, or the subtypes or stages of MS from each other.MethodsGuidelines on Preferred Reporting Items for Systematic Reviews and Meta-Analyses were followed. Electronic databases were searched for published and ‘grey’ literature, with 151 hits. Of 51 full articles screened, 20 were included in qualitative analysis, and 14 in meta-analysis.ResultsCSF NfL was higher in 746 pwMS than 435 (healthy and disease) controls, with a moderate effect size of 0.61 (p < 0.00001). Mean CSF NfL levels were significantly higher in 176 pwMS with relapsing disease than 92 with progressive disease (2124.8 ng/L, SD 3348.9 vs 1121.4 ng/L, SD 947.7, p = 0.0108). CSF NfL in 138 pwMS in relapse (irrespective of MS subtype) was double that seen in 268 pwMS in remission (3080.6 ng/L, SD 4715.9 vs 1541.7 ng/L, SD 2406.5, p < 0.0001).ConclusionsCSF NfL correlates with MS activity throughout the course of MS, reflecting the axonal damage in pwMS. Relapse is more strongly associated with elevated CSF NfL levels than the development of progression, and NfL may be most useful as a marker of disease ‘activity’ rather than as a marker of disability or disease stage.


2010 ◽  
Vol 21 (03) ◽  
pp. 204-218 ◽  
Author(s):  
Hope Elizabeth Karnes ◽  
Peter Nicholas Scaletty ◽  
Dianne Durham

Background: Neurons rely exclusively on mitochondrial oxidative phosphorylation to meet cellular energy demands, and disruption of mitochondrial function often precipitates neuronal cell death. Auditory neurons in the chick brain stem (n. magnocellularis [NM]) receive glutamatergic innervation exclusively from ipsilateral eighth nerve afferents. Cochlea removal permanently disrupts afferent support and ultimately triggers apoptotic cell death in 30–50% of ipsilateral, deafferented neurons. Here, we evaluated whether disruption of mitochondrial function occurs during deafferentation-induced neuronal cell death. Purpose: To determine whether mitochondrial dysfunction occurs preferentially within dying NM neurons. Research Design: An experimental study. All birds underwent unilateral cochlea removal. Normally innervated neurons contralateral to surgery served as within-animal controls. Study Sample: Hatchling broiler chickens between 8 and 12 days of age served as subjects. A total of 62 birds were included in the study. Intervention: Cochlea removal was performed to deafferent ipsilateral NM neurons and trigger neuronal cell death. Data Collection and Analysis: Following unilateral cochlea removal, birds were sacrificed 12, 24, 48, or 168 hours later, and brain tissue was harvested. Brainstems were sectioned through NM and evaluated histochemically for oxidative enzyme reaction product accumulation or reacted for Mitotracker Red, an indicator of mitochondrial membrane potential (m) and cytoplasmic TdT-mediated dUTP Nick-End Labeling (TUNEL), an indicator of cell death. Histochemical staining intensities for three mitochondrial enzymes, succinate dehydrogenase (SDH), cytochrome c oxidase (CO), and ATP synthase (ATPase) were measured in individual neurons and compared in ipsilateral and contralateral NM. Comparisons were made using unpaired t-tests (CO) or Kruskal Wallis one way ANOVA followed by Dunn's post hoc pairwise comparisons (ATPase, SDH). Mitotracker Red tissue was examined qualitatively for the presence of and extent of colocalization between Mitotracker Red and TUNEL label in NM. Results: Results showed global upregulation of all three oxidative enzymes within deafferented NM neurons compared to contralateral, unperturbed NM neurons. In addition, differential SDH and ATPase staining intensities were detected across neurons within the ipsilateral nucleus, suggesting functional differences in mitochondrial metabolism across deafferented NM. Quantitative analyses revealed that deafferented neurons with preferentially elevated SDH and ATPase activities represent the subpopulation destined to die following cochlea removal. In addition, Mitotracker Red accumulated intensely within the subset of deafferented NM neurons that also exhibited cytoplasmic TdT-mediated dUTP Nick-End Labeling (TUNEL) and subsequently died. Conclusions: Taken together, our results demonstrate that a subset of deafferented NM neurons, presumably those that die, preferentially upregulates SDH, perhaps via the tricarboxylic acid (TCA) cycle. These same neurons undergo ATPase uncoupling and an eventual loss of Δψm.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Jinsong Yang ◽  
Xiaohong Wu ◽  
Haogang Yu ◽  
Xinbiao Liao ◽  
Lisong Teng

The objective of the current research work was to evaluate the neuroprotective effect of the ethanol extract ofScutellaria baicalensis(S.B.) on the excitotoxic neuronal cell death in primary rat cortical cell cultures. The inhibitory effects of the extract were qualitatively and quantitatively estimated by phase-contrast microscopy and lactate dehydrogenase (LDH) assays. The extract exhibited a potent and dose-dependent inhibition of the glutamate-induced excitotoxicity in the culture media. Further, using radioligand binding assays, it was observed that the inhibitory effect of the extract was more potent and selective for the N-methyl-D-aspartate (NMDA) receptor-mediated toxicity. The S.B. ethanol extract competed with [3H] MDL 105,519 for the specific binding to the NMDA receptor glycine site with 50% inhibition occurring at 35.1 μg/mL. Further, NMDA receptor inactivation by the S.B. ethanol extract was concluded from the decreasing binding capability of [3H]MK-801 in the presence of the extract. Thus, S.B. extract exhibited neuroprotection against excitotoxic cell death, and this neuroprotection was mediated through the inhibition of NMDA receptor function by interacting with the glycine binding site of the NMDA receptor. Phytochemical analysis of the bioactive extract revealed the presence of six phytochemical constituents including baicalein, baicalin, wogonin, wogonoside, scutellarin, and Oroxylin A.


Sign in / Sign up

Export Citation Format

Share Document