scholarly journals Competing Risks Models for the Assessment of Intelligent Transportation Systems Devices: A Case Study for Connected and Autonomous Vehicle Applications

2020 ◽  
Vol 5 (3) ◽  
pp. 30 ◽  
Author(s):  
Sylvester Inkoom ◽  
John Sobanjo ◽  
Eric Chicken

Intelligent transportation system (ITS) has become a crucial section of transportation and traffic management systems in the past decades. As a result, transportation agencies keep improving the quality of transportation infrastructure management information for accessibility and security of transportation networks. The goal of this paper is to evaluate the impact of two competing risks: “natural deterioration” of ITS devices and hurricane-induced failure of the same components. The major devices employed in the architecture of this paper include closed circuit television (CCTV) cameras, automatic vehicle identification (AVI) systems, dynamic message signals (DMS), wireless communication systems and DMS towers. From the findings, it was evident that as ITS infrastructure devices age, the contribution of Hurricane Category 3 as a competing failure risk is higher and significant compared to the natural deterioration of devices. Hurricane Category 3 failure vs. natural deterioration indicated an average hazard ratio of 1.5 for CCTV, AVI and wireless communications systems and an average hazard ratio of 2.3 for DMS, DMS towers and portable DMS. The proportional hazard ratios of the Hurricane Category 1 compared to the devices was estimated as <0.001 and that of Hurricane Category 2 < 0.5, demonstrating the lesser impact of the Hurricane Categories 1 and 2. It is expedient to envisage and forecast the impact of hurricanes on the failure of wireless communication networks, vehicle detection systems and other message signals, in order to prevent vehicle to infrastructure connection disruption, especially for autonomous and connected vehicle systems.

Author(s):  
Qingyan Yang ◽  
Virginia Sisiopiku ◽  
Jim A. Arnold ◽  
Paul Pisano ◽  
Gary G. Nelson

Rural transportation systems have different features and needs than their urban counterparts. To address safety and efficiency concerns in rural environments, advanced rural transportation systems (ARTS) test and deploy appropriate intelligent transportation systems (ITS) technologies, many of which require communication support. However, wireless communication systems that currently serve urban areas often are not available or suitable in rural environments. Thus, a need exists to identify communication solutions that are likely to address successfully the needs and features of ARTS applications. Current and emerging wireless communications systems and technologies have been systematically assessed with respect to rural ITS applications. Wireless communication functions associated with rural ITS functions are first identified. Then requirements for applicable communication technologies in the rural environment are defined. Existing and emerging wireless communication systems and technologies are reviewed and evaluated by a systematic process of assessing rural ITS wireless solutions. Finally, recommendations for future research and operational tests are offered. The analysis results are expected to benefit rural ITS planners by identifying suitable wireless solutions for different rural contexts.


Author(s):  
Kira Kastell

Communication in transportation systems not only involves the communication inside a vehicle, train, or airplane but it also includes the transfer of data to and from the transportation system or between devices belonging to that system. This will be done using different types of wireless communication. Therefore in this chapter, first, the fundamentals of mobile communication networks are shortly described. Thereafter, possible candidate networks are discussed. Their suitability for a certain transportation system can be evaluated taking into consideration the system's requirements. Among the most prominent are the influence of speed and mobility, data rate and bit error rate constraints, reliability of the system and on-going connections. As in most of the cases, there will be no single best wireless communication network to fulfil all requirements, and in this chapter also hybrid networks are discussed. These are networks consisting of different (wireless) access networks. The devices may use the best suited network for a given situation but also change to another network while continuing the on-going connection or data transfer. Here the design of the handover or relocation plays a critical role as well as localization.


Author(s):  
Pouwan Lei ◽  
Jia Jia Wang

The mobile phone industry has experienced an explosive growth in recent years. The emerging markets such as China, India, and Brazil contribute this growth. In China, the number of mobile subscribers has already surpassed the number of fixed landline phone subscribers. In Korea and Japan, there is an explosion of mobile and wireless services. The United States are joining too and there were 207.9 million subscribers in 2005 (CTIA, 2006). Mobile e-commerce (m-commerce) makes business mobility a reality; mobile users could access the Internet at any time, from anywhere with handheld devices or laptop. A 3G enabled smart phone enables you to access a wide range of services anywhere and anytime. For example, you can send and receive e-mail, make cinema and restaurant reservations and pay for them, check real train time, look at digital maps, download music and games, and also browse the Internet. Mobile and wireless services are ranging from mobile communication networks to wireless local area networks. The service provided by mobile communication systems has achieved huge success as mobile and wireless communication technologies are converging at fast speed. We will study mobile and wireless communication in relation to mobile phones. Hence, m-commerce is defined as electronic commerce carried out in handheld devices such as smart phone through mobile and wireless communication network.


Sensors ◽  
2020 ◽  
Vol 20 (3) ◽  
pp. 791 ◽  
Author(s):  
Liviu-Adrian Hîrţan ◽  
Ciprian Dobre ◽  
Horacio González-Vélez

A disruptive technology often used in finance, Internet of Things (IoT) and healthcare, blockchain can reach consensus within a decentralised network—potentially composed of large amounts of unreliable nodes—and to permanently and irreversibly store data in a tamper-proof manner. In this paper, we present a reputation system for Intelligent Transportation Systems (ITS). It considers the users interested in traffic information as the main actors of the architecture. They securely share their data which are collectively validated by other users. Users can choose to employ either such crowd-sourced validated data or data generated by the system to travel between two locations. The data saved is reliable, based on the providers’ reputation and cannot be modified. We present results with a simulation for three cities: San Francisco, Rome and Beijing. We have demonstrated the impact of malicious attacks as the average speed decreased if erroneous information was stored in the blockchain as an implemented routing algorithm guides the honest cars on other free routes, and thus crowds other intersections.


Sign in / Sign up

Export Citation Format

Share Document