scholarly journals Concanavalin A Toxicity Towards Potato Psyllid and Apoptosis Induction in Midgut Cells

Insects ◽  
2020 ◽  
Vol 11 (4) ◽  
pp. 243 ◽  
Author(s):  
Xiao-Tian Tang ◽  
Freddy Ibanez ◽  
Cecilia Tamborindeguy

Concanavalin A (ConA), a legume lectin, has been drawing increasing attention in recent years concerning its toxicity against insects and its potential application in pest management. In an attempt to evaluate the effect of ConA on potato psyllid (Bactericera cockerelli), an economically important pest of solanaceous crops, the effect of ConA on potato psyllid survival, psyllid gut nuclear morphology, and expression of psyllid caspase genes were evaluated. Our results determined that artificial diet-feeding assays using ConA had deleterious effects on potato psyllids, resulting in significant psyllid mortality following ingestion. We also found that an apoptotic response was induced by ConA in psyllid midgut cells, which was demonstrated by the DNA fragmentation and abnormal nuclear architecture in the midgut cells. Following ConA ingestion, there was also upregulation of caspase genes in the psyllid midguts. Therefore, a key mechanism behind ConA toxicity towards potato psyllid probably involves the induction of apoptosis in midgut cells. This study could provide a better understanding of the mechanisms underlying ConA toxicity in insects and be a stepping stone towards the development of new psyllid control strategies based on plant lectins.

2014 ◽  
Vol 67 ◽  
pp. 184-190 ◽  
Author(s):  
M.M. Davidson ◽  
R.C. Butler ◽  
N.M. Taylor ◽  
M-C. Nielsen ◽  
C.E. Sansom ◽  
...  

Bactericera cockerelli (tomato potato psyllid; TPP) is an important pest of solanaceous crops in New Zealand and North America A volatile compound that alters the behaviour of TPP could be developed into a component of an integrated pest management strategy for solanaceous crops One compound 2undecanone was found to increase the percentages of female and male TPP (65 P


2019 ◽  
Vol 88 (1) ◽  
Author(s):  
Xiao-Tian Tang ◽  
Cecilia Tamborindeguy

ABSTRACT “Candidatus Liberibacter solanacearum” is a pathogen transmitted by the potato psyllid Bactericera cockerelli (Šulc) (Hemiptera: Triozidae) in a persistent manner. In this study, we investigated the molecular interaction between “Ca. Liberibacter solanacearum” and the potato psyllid at the gut interface. Specifically, we focused on the apoptotic response of potato psyllids to the infection by two “Ca. Liberibacter solanacearum” haplotypes, LsoA and LsoB. To this end, we first quantified and localized “Ca. Liberibacter solanacearum” in the gut of adult psyllids. We then evaluated the existence of an apoptotic response in the insect gut using microscopy analyses to visualize the nuclei and the actin cytoskeleton of the gut cells and DNA fragmentation analyses by agarose gel electrophoresis. We also performed annexin V cell death assays to detect apoptosis. Finally, we annotated apoptosis-related genes from the potato psyllid transcriptome and evaluated their expression in response to “Ca. Liberibacter solanacearum” infection. The results showed no cellular markers of apoptosis despite the large amount of “Ca. Liberibacter solanacearum” present in the psyllid gut. In addition, only three genes potentially involved in apoptosis were regulated in the psyllid gut in response to “Ca. Liberibacter solanacearum”: the apoptosis-inducing factor AIF3 was downregulated in LsoA-infected psyllids, while the inhibitor of apoptosis IAPP5 was downregulated and IAP6 was upregulated in LsoB-infected psyllids. Overall, no evidence of apoptosis was observed in the gut of potato psyllid adults in response to either “Ca. Liberibacter solanacearum” haplotype. This study represents a first step toward understanding the interactions between “Ca. Liberibacter solanacearum” and the potato psyllid, which is crucial to developing approaches to disrupt their transmission.


2020 ◽  
Vol 11 ◽  
Author(s):  
Xiao-Tian Tang ◽  
Kelsy Fortuna ◽  
Azucena Mendoza Herrera ◽  
Cecilia Tamborindeguy

“Candidatus Liberibacter solanacearum” (Lso) is a phloem-limited Gram-negative bacterium that infects crops worldwide. In North America, two haplotypes of Lso (LsoA and LsoB) are transmitted by the potato psyllid, Bactericera cockerelli (Šulc), in a circulative and persistent manner. Both haplotypes cause damaging plant diseases (e.g., zebra chip in potatoes). The psyllid gut is the first organ Lso encounters and could be a barrier for its transmission. However, little is known about the psyllid gut immune responses triggered upon Lso infection. In this study, we focused on the apoptotic response in the gut of adult potato psyllids at the early stage of Lso infection. We found that there was no evidence of apoptosis induced in the gut of the adult potato psyllids upon infection with either Lso haplotype based on microscopic observations. However, the expression of the inhibitor of apoptosis IAPP5.2 gene (survivin-like) was significantly upregulated during the period that Lso translocated into the gut cells. Interestingly, silencing of IAPP5.2 gene significantly upregulated the expression of two effector caspases and induced apoptosis in the psyllid gut cells. Moreover, RNA interference (RNAi) of IAPP5.2 significantly decreased the Lso titer in the gut of adult psyllids and reduced their transmission efficiency. Taken together, these observations suggest that Lso might repress the apoptotic response in the psyllid guts by inducing the anti-apoptotic gene IAPP5.2 at an early stage of the infection, which may favor Lso acquisition in the gut cells and facilitate its transmission by potato psyllid.


2020 ◽  
Vol 113 (5) ◽  
pp. 2079-2085
Author(s):  
Navneet Kaur ◽  
W Rodney Cooper ◽  
Jennifer M Duringer ◽  
Arash Rashed ◽  
Ismael E Badillo-Vargas ◽  
...  

Abstract Our previous study provided correlative evidence that morning glory species harboring endophytic fungi (Periglandula) are resistant to potato psyllid [Bactericera cockerelli (Šulc)], whereas species free of fungi often allowed psyllid development. In this study, we manipulated levels of ergot alkaloids in host tissues by inoculating clippings from potato plants with extracts from morning glories that harbor Periglandula [Ipomoea leptophylla Torrey, Ipomoea imperati (Vahl) Grisebach, Ipomoea tricolor Cavanilles, Ipomoea pandurata (L.) G. F. Meyer, and Turbina corymbosa (L.)] and one species (Ipomoea alba L.) that does not harbor the endophyte. Ergot alkaloids (clavines, lysergic acid amides, and ergopeptines) were detected in potato clippings, thus confirming that leaves had taken up compounds from solutions of crude extracts. Psyllid mortality rates on inoculated clippings ranged between 53 and 93% in treatments producing biochemically detectable levels of alkaloids, when compared with 15% mortality in water controls or the alkaloid-free I. alba. We then tested synthetic analogs from each of the three alkaloid classes that had been detected in the crude extracts. Each compound was assayed by inoculating clippings of two host species (potato and tomato) at increasing concentrations (0, 1, 10, and 100 µg/ml in solution). Psyllids exhibited a large and significant increase in mortality rate beginning at the lowest two concentrations, indicating that even very small quantities of these chemicals led to mortality. Feeding by nymphs on artificial diets containing synthetic compounds resulted in 100% mortality within 48 h, irrespective of compound. Further testing of ergot alkaloids to characterize the mode of action that leads to psyllid mortality is warranted.


2016 ◽  
Vol 106 (2) ◽  
pp. 142-154 ◽  
Author(s):  
J. M. Cicero ◽  
T. W. Fisher ◽  
J. K. Brown

The potato psyllid Bactericera cockerelli is implicated as the vector of the causal agent of zebra chip of potato and vein-greening of tomato diseases. Until now, visual identification of bacteria in the genus ‘Candidatus Liberibacter’ has relied on direct imaging by light and electron microscopy without labeling, or with whole-organ fluorescence labeling only. In this study, aldehyde fixative followed by a coagulant fixative, was used to process adult psyllids for transmission electron microscopy (TEM) colloidal gold in situ hybridization experiments. Results indicated that ‘Ca. Liberibacter solanacearum’ (CLso)-specific DNA probes annealed to a bacterium that formed extensive, monocultural biofilms on gut, salivary gland, and oral region tissues, confirming that it is one morphotype of potentially others, that is rod-shaped, approximately 2.5 µm in diameter and of variable length, and has a rough, granular cytosol. In addition, CLso, prepared from shredded midguts, and negatively stained for TEM, possessed pili- and flagella-like surface appendages. Genes implicating coding capacity for both types of surface structures are encoded in the CLso genome sequence. Neither type was seen for CLso associated with biofilms within or on digestive organs, suggesting that their production is stimulated only in certain environments, putatively, in the gut during adhesion leading to multiplication, and in hemolymph to afford systemic invasion.


Insects ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1073
Author(s):  
Xiao-Tian Tang ◽  
Cecilia Tamborindeguy

Autophagy, also known as type II programmed cell death, is a cellular mechanism of “self-eating”. Autophagy plays an important role against pathogen infection in numerous organisms. Recently, it has been demonstrated that autophagy can be activated and even manipulated by plant viruses to facilitate their transmission within insect vectors. However, little is known about the role of autophagy in the interactions of insect vectors with plant bacterial pathogens. ‘Candidatus Liberibacter solanacearum’ (Lso) is a phloem-limited Gram-negative bacterium that infects crops worldwide. Two Lso haplotypes, LsoA and LsoB, are transmitted by the potato psyllid, Bactericera cockerelli and cause damaging diseases in solanaceous plants (e.g., zebra chip in potatoes). Both LsoA and LsoB are transmitted by the potato psyllid in a persistent circulative manner: they colonize and replicate within psyllid tissues. Following acquisition, the gut is the first organ Lso encounters and could be a barrier for transmission. In this study, we annotated autophagy-related genes (ATGs) from the potato psyllid transcriptome and evaluated their expression in response to Lso infection at the gut interface. In total, 19 ATGs belonging to 17 different families were identified. The comprehensive expression profile analysis revealed that the majority of the ATGs were regulated in the psyllid gut following the exposure or infection to each Lso haplotype, LsoA and LsoB, suggesting a potential role of autophagy in response to Lso at the psyllid gut interface.


1984 ◽  
Vol 66 (1) ◽  
pp. 155-166
Author(s):  
K.G. Sundqvist ◽  
L. Wanger ◽  
W. Ensgstom

Unfractionated or T-cell-enriched human lymphocytes can be stimulated to undergo DNA synthesis and mitosis by the addition of polyclonal cell activators such as the plant lectins phytohaemagglutinin and concanavalin A (ConA). Under conventional culture conditions stimulated cells cease proliferating only a few days after the first cells have initiated DNA synthesis. Cytochalasin B (CB), which is non-mitogenic per se, causes a prolongation of the period during which ConA stimulates DNA synthesis from normally 3–5 days to more than 3 weeks. The CB-induced prolongation of cell proliferation is clearly stage-specific in the sense that the CB effects are exerted after an initial period of 24 h and do not come into effect until 48 h after onset of ConA stimulation. In contrast, CB exerts a slight suppressive action on DNA synthesis between 24 h (when activated cells initiate DNA synthesis) and 48 h after onset of stimulation. These two separate effects of CB, i.e. augmentation of lymphocyte stimulation 48 h after stimulation, and suppression of stimulation before this point of time, are relatively independent of the concentration of CB.


Polymers ◽  
2019 ◽  
Vol 11 (6) ◽  
pp. 1023
Author(s):  
Lili Guo ◽  
Shuang Chao ◽  
Pei Huang ◽  
Xiukai Lv ◽  
Quanquan Song ◽  
...  

A universal photochemical method to prepare carbohydrate sensors based on perfluorophenylazide (PFPA) modified polydopamine (PDA) for the study of carbohydrate–lectin interactions by a quartz crystal microbalance (QCM) biosensor was developed. The PFPA was immobilized on PDA-coated gold sensors via Schiff base reactions. Upon light irradiation, the underivatized carbohydrates were inserted into the sensor surface, including mannose, galactose, fucose and N-acetylglucosamine (GlcNAc). Carbohydrate sensors were evaluated for the binding to a series of plant lectins. A kinetic study of the interactions between mannose and concanavalin A (Con A), fucose and Ulex europaeus agglutinin I (UEA-I) were performed. This method can eliminate the tedious modification of carbohydrates, improve the experimental efficiency, and reduce the experimental cost, which is of great significance for the development of QCM biosensors and the study of biomolecular interactions.


2010 ◽  
Vol 11 (1) ◽  
pp. 33 ◽  
Author(s):  
James M. Crosslin ◽  
Joseph E. Munyaneza ◽  
Judith K. Brown ◽  
Lia W. Liefting

Potato zebra chip (ZC) disease is a relative newcomer to the world of important potato diseases. First reported in Mexico in the 1990s, by 2004-2005 the disease was causing serious economic damage in parts of Texas. ZC is now widespread in the south-western and central United States, Mexico, Central America, and was recently reported in New Zealand. By 2006, there seemed to be an association between ZC and the potato psyllid (Bactericera cockerelli). The exact nature of the relationship, however, has only recently been identified by the discovery of a new Candidatus Liberibacter bacterium that is transmitted to potatoes, tomatoes, and other solanaceous hosts by the potato psyllid. This review examines the history of this disease, the association of ZC with the potato psyllid, the host range, and recent research into the bacterial pathogen. Accepted for publication 15 December 2009. Published 17 March 2010.


Sign in / Sign up

Export Citation Format

Share Document