scholarly journals Genome-Wide Identification of the Gustatory Receptor Gene Family of the Invasive Pest, Red Palm Weevil, Rhynchophorus ferrugineus (Olivier, 1790)

Insects ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 611
Author(s):  
Patamarerk Engsontia ◽  
Chutamas Satasook

The red palm weevil (Rhynchophorus ferrugineus) is a highly destructive pest of oil palm, date, and coconut in many parts of Asia, Europe, and Africa. The Food and Agriculture Organization of the United Nations has called for international collaboration to develop a multidisciplinary strategy to control this invasive pest. Previous research focused on the molecular basis of chemoreception in this species, particularly olfaction, to develop biosensors for early detection and more effective bait traps for mass trapping. However, the molecular basis of gustation, which plays an essential role in discriminating food and egg-laying sites and chemical communication in this species, is limited because its complete gustatory receptor gene family still has not been characterized. We manually annotated the gene family from the recently available genome and transcriptome data and reported 50 gustatory receptor genes encoding 65 gustatory receptors, including 7 carbon dioxide, 9 sugar, and 49 bitter receptors. This study provides a platform for future functional analysis and comparative chemosensory study. A better understanding of gustation will improve our understanding of this species’ complex chemoreception, which is an important step toward developing more effective control methods.

2020 ◽  
Vol 16 (2) ◽  
pp. 203-218
Author(s):  
Mohammed M. Alderawii ◽  
◽  
Aqeel A. Alyousuf ◽  
Samir A. Hasan ◽  
Jasim K. Mohammed ◽  
...  

The Red Palm Weevil (RPW), Rhynchophorus ferrugineus (Olivier, 1790) is a devastating invasive pest of palm trees, invading the Iraqi date palm tree in 2015 for the first time in Safwan county, Basrah province. The Red Palm weevil has been categorized as a quarantine pest of date palm trees worldwide. In this study, a five years monitoring program has been achieved by scouting the invasive pest RPW population in Safwan county by using visual sampling and Pheromone baited traps. The results indicated that the number of infested palms, increased from 12 trees in 2015 to 111 in 16 orchards in 2016. The number of the infested palms was minimized to 3 trees in the county in 2019 due to the management protocol of the Ministry of Agriculture. Furthermore, the results of RPW adults appeared monthly in the county with two activity peaks during the moderate-temperature-months. In conclusion, the quarantine and management protocol of RPW decreased the population of the invasive pest which did not spread to other districts of Iraq.


EPPO Bulletin ◽  
2011 ◽  
Vol 41 (2) ◽  
pp. 116-121 ◽  
Author(s):  
A. Roda ◽  
M. Kairo ◽  
T. Damian ◽  
F. Franken ◽  
K. Heidweiller ◽  
...  

2018 ◽  
Vol 10 (6) ◽  
pp. 1351-1362 ◽  
Author(s):  
Hiromu C Suzuki ◽  
Katsuhisa Ozaki ◽  
Takashi Makino ◽  
Hironobu Uchiyama ◽  
Shunsuke Yajima ◽  
...  

2020 ◽  
Vol 31 (4) ◽  
pp. 190-192
Author(s):  
H.A. El-Shafie ◽  
M.E. Mohammed ◽  
A.A. Sallam

Date palm offshoots represent an important source of planting material in many date palm-growing countries around the world. Infestation by the red palm weevil ((RPW) Rhynchophorus ferrugineus), the longhorn beetle ((LHB) Jebusaea hammerschmidti) and the rhinoceros beetle ((OB) Oryctes spp.) hinders commercialization and movement of these offshoots. An effective quarantine protocol, with exposure period of 72 h at 25 °C using ECO2FUME (EF) with phosphine concentration of 1500 ppm has been developed for date palm offshoots against these coleopteran internal tissue borers.


Insects ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 594
Author(s):  
Qian-Xia Liu ◽  
Zhi-Ping Su ◽  
Hui-Hui Liu ◽  
Sheng-Ping Lu ◽  
Bing Ma ◽  
...  

Red Palm Weevil (RPW), Rhynchophorus ferrugineus Olivier, is a notorious pest, which infests palm trees and has caused great economic losses worldwide. At present, insecticide applications are still the main way to control this pest. However, pesticide resistance has been detected in the field populations of RPW. Thus, future management strategies based on the novel association biological control need be developed. Recent studies have shown that the intestinal tract of RPW is often colonized by multiple microbial species as mammals and model insects, and gut bacteria have been found to promote the growth, development and immune activity of RPW larvae by modulating nutrient metabolism. Furthermore, two peptidoglycan recognition proteins (PGRPs), PGRP-LB and PGRP-S1, can act as the negative regulators to modulate the intestinal immunity to maintain the homeostasis of gut bacteria in RPW larvae. Here, we summarized the current knowledge on the gut bacterial composition of RPW and their impact on the physiological traits of RPW larvae. In contrast with metazoans, it is much easier to make genetic engineered microbes to produce some active molecules against pests. From this perspective, because of the profound effects of gut bacteria on host phenotypes, it is promising to dissect the molecular mechanisms behind their effect on host physiology and facilitate the development of microbial resource-based management methods for pest control.


Sign in / Sign up

Export Citation Format

Share Document