scholarly journals Comparative Mitogenomic Analysis of Two Longhorn Beetles (Coleoptera: Cerambycidae: Lamiinae) with Preliminary Investigation into Phylogenetic Relationships of Tribes of Lamiinae

Insects ◽  
2021 ◽  
Vol 12 (9) ◽  
pp. 820
Author(s):  
Yifang Ren ◽  
Huanhuan Lu ◽  
Longyan Chen ◽  
Simone Sabatelli ◽  
Chaojie Wang ◽  
...  

The subfamily Lamiinae is the most taxonomically diverse subfamily of Cerambycidae, but relationships between tribes of Lamiinae are still unresolved. In order to study the characteristics of the mitogenomes of Lamiinae and the tribal-level phylogenetic relationships, we sequenced the mitogenomes of two species representing two tribes, Agapanthia amurensis (Agapanthiini) and Moechotypa diphysis (Ceroplesini), with a total length of 15,512 bp and 15,493 bp, respectively. The gene arrangements of these two new mitogenomes were consistent with the inferred ancestral insect mitogenomes. Each species contained 37 typical mitochondrial genes and a control region (A + T-rich region), including 13 protein-coding genes (PCGs), 22 transfer RNA genes (tRNAs), and two ribosomal RNA genes (rRNAs). All PCGs initiated with the standard start codon ATN, and terminated with the complete stop codons of TAA and TAG, or incomplete stop codon T. All tRNAs could be folded into a clover-leaf secondary structure except for trnS1, in which the dihydrouridine (DHU) arm was reduced. Moreover, we studied the phylogenetic relationships between some tribes of Lamiinae based in mitochondrial PCGs in nucleotides; our results show that the relationships were as follows: (Onciderini + ((Apomecynini + Acanthocinini) + ((Ceroplesini + Agapanthiini) + ((Mesosini + Pteropliini) + ((Dorcaschematini + (Saperdini 1 + (Phytoeciini + Saperdini 2))) + (Batocerini + Lamiini)))))).

Insects ◽  
2020 ◽  
Vol 11 (10) ◽  
pp. 684
Author(s):  
Xian Zhou ◽  
Christopher H. H. Dietrich ◽  
Min Huang

To explore the characteristics of mitogenomes and reveal phylogenetic relationships of the tribes of Zyginellini and Typhlocybini in Typhlocybinae, mitogenomes of two species of the Zyginellini, Parazyginella tiani and Limassolla sp., were sequenced. Mitogenomes of both species contain 13 protein-coding genes (PCGs), 22 transfer RNA genes (tRNAs), two ribosomal RNA genes (rRNAs) and a large non-coding region (A + T-rich region). These characteristics are similar to other Membracoidea mitogenomes. All PCGs initiate with the standard start codon of ATN and terminate with the complete stop codon of TAA/G or with an incomplete T codon. All tRNAs have the typical clover-leaf structure, except trnS1 which has a reduced DHU arm and the acceptor stem of trnR is 5 or 6 bp in some species, an unusual feature here reported for the first time in Typhlocybinae. The A + T-rich region is highly variable in length and in numbers of tandem repeats present. Our analyses indicate that nad6 and atp6 exhibit higher evolutionary rates compared to other PCGs. Phylogenetic analyses by both maximum likelihood and Bayesian methods based on 13 protein-coding genes of 12 species of Typhlocybinae suggest that Zyginellini are paraphyletic with respect to Typhlocybini.


Genes ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 1185
Author(s):  
Wenqian Wang ◽  
Huan Zhang ◽  
Jérôme Constant ◽  
Charles R. Bartlett ◽  
Daozheng Qin

The complete mitogenomes of nine fulgorid species were sequenced and annotated to explore their mitogenome diversity and the phylogenetics of Fulgoridae. All species are from China and belong to five genera: Dichoptera Spinola, 1839 (Dichoptera sp.); Neoalcathous Wang and Huang, 1989 (Neoalcathous huangshanana Wang and Huang, 1989); Limois Stål, 1863 (Limois sp.); Penthicodes Blanchard, 1840 (Penthicodes atomaria (Weber, 1801), Penthicodes caja (Walker, 1851), Penthicodes variegata (Guérin-Méneville, 1829)); Pyrops Spinola, 1839 (Pyrops clavatus (Westwood, 1839), Pyrops lathburii (Kirby, 1818), Pyrops spinolae (Westwood, 1842)). The nine mitogenomes were 15,803 to 16,510 bp in length with 13 protein-coding genes (PCGs), 22 transfer RNA genes (tRNAs), 2 ribosomal RNA genes (rRNAs) and a control region (A + T-rich region). Combined with previously reported fulgorid mitogenomes, all PCGs initiate with either the standard start codon of ATN or the nonstandard GTG. The TAA codon was used for termination more often than the TAG codon and the incomplete T codon. The nad1 and nad4 genes varied in length within the same genus. A high percentage of F residues were found in the nad4 and nad5 genes of all fulgorid mitogenomes. The DHU stem of trnV was absent in the mitogenomes of all fulgorids sequenced except Dichoptera sp. Moreover, in most fulgorid mitogenomes, the trnL2, trnR, and trnT genes had an unpaired base in the aminoacyl stem and trnS1 had an unpaired base in the anticodon stem. The similar tandem repeat regions of the control region were found in the same genus. Phylogenetic analyses were conducted based on 13 PCGs and two rRNA genes from 53 species of Fulgoroidea and seven outgroups. The Bayesian inference and maximum likelihood trees had a similar topological structure. The major results show that Fulgoroidea was divided into two groups: Delphacidae and ((Achilidae + (Lophopidae + (Issidae + (Flatidae + Ricaniidae)))) + Fulgoridae). Furthermore, the monophyly of Fulgoridae was robustly supported, and Aphaeninae was divided into Aphaenini and Pyropsini, which includes Neoalcathous, Pyrops, Datua Schmidt, 1911, and Saiva Distant, 1906. The genus Limois is recovered in the Aphaeninae, and the Limoisini needs further confirmation; Dichoptera sp. was the earliest branch in the Fulgoridae.


2021 ◽  
Author(s):  
Longqiang Zhu ◽  
Zhihuang Zhu ◽  
Leiyu Zhu ◽  
Dingquan Wang ◽  
Jianxin Wang ◽  
...  

In this study, the complete mitogenome of Lysmata vittata (Crustacea: Decapoda: Hippolytidae) has been determined. The genome sequence was 22003 base pairs (bp) and it included thirteen protein-coding genes (PCGs), twenty-two transfer RNA genes (tRNAs), two ribosomal RNA genes (rRNAs) and three putative control regions (CRs). The nucleotide composition of AT was 71.50%, with a slightly negative AT skewness (-0.04). Usually the standard start codon of the PCGs was ATN, while cox1, nad4L and cox3 began with TTG, TTG and GTG. The canonical termination codon was TAA, while nad5 and nad4 ended with incomplete stop codon T, and cox1 ended with TAG. We compared the order of genes of Decapoda ancestor and found that the positions of the two tRNAs genes ( trnA and trnR ) of the L. vittata were translocated. The phylogenetic tree showed that L. vittata was an independent clade, namely Hippolytidae.


Insects ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1049
Author(s):  
Huifeng Zhao ◽  
Ye Chen ◽  
Zitong Wang ◽  
Haifeng Chen ◽  
Yaoguang Qin

The complete mitochondrial genomes of two species of Chalcididae were newly sequenced: Brachymeria lasus and Haltichella nipponensis. Both circular mitogenomes are 15,147 and 15,334 bp in total length, respectively, including 13 protein-coding genes (PCGs), two ribosomal RNA genes (rRNAs), and 22 transfer RNA genes (tRNAs) and an A+T-rich region. The nucleotide composition indicated a strong A/T bias. All PCGs of B. lasus and H. nipponensis began with the start codon ATD, except for B. lasus, which had an abnormal initiation codon TTG in ND1. Most PCGs of the two mitogenomes are terminated by a codon of TAR, and the remaining PCGs by the incomplete stop codon T or TA (ATP6, COX3, and ND4 in both species, with an extra CYTB in B. lasus). Except for trnS1 and trnF, all tRNAs can be folded into a typical clover structure. Both mitogenomes had similar control regions, and two repeat units of 135 bp were found in H. nipponensis. Phylogenetic analyses based on two datasets (PCG123 and PCG12) covering Chalcididae and nine families of Chalcidoidea were conducted using two methods (maximum likelihood and Bayesian inference); all the results support Mymaridae as the sister group of the remaining Chalcidoidea, with Chalcididae as the next successive group. Only analyses of PCG123 generated similar topologies of Mymaridae + (Chalcididae + (Agaonidae + remaining Chalcidoidea)) and provided one relative stable clade as Eulophidae + (Torymidae + (Aphelinidae + Trichogrammatidae)). Our mitogenomic phylogenetic results share one important similarity with earlier molecular phylogenetic efforts: strong support for the monophyly of many families, but a largely unresolved or unstable “backbone” of relationships among families.


Author(s):  
Dong-Bin Chen ◽  
Ru-Song Zhang ◽  
Xiang-Dong Jin ◽  
Jian Yang ◽  
Peng Li ◽  
...  

Abstract To explore the characteristics of the mitochondrial genome (mitogenome) of the squeaking silkmoths Rhodinia, a genus of wild silkmoths in the family Saturniidae of Lepidoptera, and reveal phylogenetic relationships, the mitogenome of Rhodinia fugax Butler was determined. This wild silkmoth spins a green cocoon that has potential significance in sericulture, and exhibits a unique feature that its larvae can squeak loudly when touched. The mitogenome of R. fugax is a circular molecule of 15,334 bp long and comprises 13 protein-coding genes, two ribosomal RNA genes, 22 transfer RNA genes, and an A + T-rich region, consistent with previous observations of Saturniidae species. The 370-bp A + T-rich region of R. fugax contains no tandem repeat elements and harbors several features common to the Bombycidea insects, but microsatellite AT repeat sequence preceded by the ATTTA motif is not present. Mitogenome-based phylogenetic analysis shows that R. fugax belongs to Attacini, instead of Saturniini. This study presents the first mitogenome for Rhodinia genus.


Zootaxa ◽  
2019 ◽  
Vol 4652 (1) ◽  
pp. 126-134 ◽  
Author(s):  
JUN LI ◽  
KUNJIE HU ◽  
YAQI ZHAO ◽  
RUIRUI LIN ◽  
YAOYAO ZHANG ◽  
...  

In this study, the complete mitochondrial DNA sequence of Parum colligata (Lepidoptera: Sphingidae: Smerinthinae) was sequenced firstly. The mitogenome is 15,288 bp in size, containing 13 protein-coding genes (PCGs), 22 transfer RNA genes (tRNAs), two ribosomal RNA genes (rRNAs), and an A+T-rich region. In the mitogenome, Ile, Leu2, and Phe are the most frequently used codon families, while codons GCG, TGC, GGC, CTG, AGG, and ACG are absent. The A+T-rich region is 358 bp in length including a motif ‘ATAGA’, an 18 bp poly-T stretch, three copies of a 12 bp ‘TATATATATATA’, and a short poly-A element. The nucleotides sequence of A+T-rich region is closer to Sphinginae than Macroglossinae. Phylogenetic analyses, based on the PCGs by using Maximum Likelihood (ML) and Bayesian Inference (BI) methods, generated consistent results that Smerinthinae was clustered together with Sphinginae to be the sister groups rather than Macroglossinae. 


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Vikas Kumar ◽  
Kaomud Tyagi ◽  
Rajasree Chakraborty ◽  
Priya Prasad ◽  
Shantanu Kundu ◽  
...  

AbstractThe complete mitochondrial genome of Lyrognathus crotalus is sequenced, annotated and compared with other spider mitogenomes. It is 13,865 bp long and featured by 22 transfer RNA genes (tRNAs), and two ribosomal RNA genes (rRNAs), 13 protein-coding genes (PCGs), and a control region (CR). Most of the PCGs used ATN start codon except cox3, and nad4 with TTG. Comparative studies indicated the use of TTG, TTA, TTT, GTG, CTG, CTA as start codons by few PCGs. Most of the tRNAs were truncated and do not fold into the typical cloverleaf structure. Further, the motif (CATATA) was detected in CR of nine species including L. crotalus. The gene arrangement of L. crotalus compared with ancestral arthropod showed the transposition of five tRNAs and one tandem duplication random loss (TDRL) event. Five plesiomophic gene blocks (A-E) were identified, of which, four (A, B, D, E) retained in all taxa except family Salticidae. However, block C was retained in Mygalomorphae and two families of Araneomorphae (Hypochilidae and Pholcidae). Out of 146 derived gene boundaries in all taxa, 15 synapomorphic gene boundaries were identified. TreeREx analysis also revealed the transposition of trnI, which makes three derived boundaries and congruent with the result of the gene boundary mapping. Maximum likelihood and Bayesian inference showed similar topologies and congruent with morphology, and previously reported multi-gene phylogeny. However, the Gene-Order based phylogeny showed sister relationship of L. crotalus with two Araneomorphae family members (Hypochilidae and Pholcidae) and other Mygalomorphae species.


Insects ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 668
Author(s):  
Tinghao Yu ◽  
Yalin Zhang

More studies are using mitochondrial genomes of insects to explore the sequence variability, evolutionary traits, monophyly of groups and phylogenetic relationships. Controversies remain on the classification of the Mileewinae and the phylogenetic relationships between Mileewinae and other subfamilies remain ambiguous. In this study, we present two newly completed mitogenomes of Mileewinae (Mileewa rufivena Cai and Kuoh 1997 and Ujna puerana Yang and Meng 2010) and conduct comparative mitogenomic analyses based on several different factors. These species have quite similar features, including their nucleotide content, codon usage of protein genes and the secondary structure of tRNA. Gene arrangement is identical and conserved, the same as the putative ancestral pattern of insects. All protein-coding genes of U. puerana began with the start codon ATN, while 5 Mileewa species had the abnormal initiation codon TTG in ND5 and ATP8. Moreover, M. rufivena had an intergenic spacer of 17 bp that could not be found in other mileewine species. Phylogenetic analysis based on three datasets (PCG123, PCG12 and AA) with two methods (maximum likelihood and Bayesian inference) recovered the Mileewinae as a monophyletic group with strong support values. All results in our study indicate that Mileewinae has a closer phylogenetic relationship to Typhlocybinae compared to Cicadellinae. Additionally, six species within Mileewini revealed the relationship (U. puerana + (M. ponta + (M. rufivena + M. alara) + (M. albovittata + M. margheritae))) in most of our phylogenetic trees. These results contribute to the study of the taxonomic status and phylogenetic relationships of Mileewinae.


Zootaxa ◽  
2017 ◽  
Vol 4363 (4) ◽  
pp. 506
Author(s):  
HUAXUAN LIU ◽  
LIYUN YAN ◽  
GUOFANG JIANG

In this study, we reported the complete mitochondrial genome (mitogenome) of Sinopodisma pieli by polymerase chain reaction method for the first time, the type species of the genus Sinopodisma. Its mitogenome was a circular DNA molecule of 15,625 bp in length, with 76.0% A+T, and contained 13 protein-coding genes, 22 transfer RNA genes and two ribosomal RNA genes and one A+T control region. The overall base composition of the S. pieli mitogenome was 42.8% for A, 33.2% for T, 13.5% for C, and 10.5% for G, respectively. All 13 mitochondrial PCGs shared the start codon ATN. Twelve of the PCGs ended with termination codon TAA and TAG, while cytochrome coxidase subunit 1 (COI) utilized an incomplete T as terminator codon. All tRNA genes could be folded into the typical cloverleaf secondary structure, except trnS(AGN) lacking of dihydrouridine arm. The sizes of the large and small ribosomal RNA genes were 1379 bp and 794 bp, respectively. The A+T rich region was 798 bp in length and contained 88.5% AT content. A phylogenetic analysis based on 13 PCGs by using Bayesian inference (BI) and maximum likelihood (ML) revealed that Sinopodisma is not monophyletic group. We think that the name and taxonomic status of S. tsinlingensis are right, and it should not be moved into the genus Pedopodisma. These data will provide important information for a better understanding of the population genetics and species identification for Sinopodisma. 


Sign in / Sign up

Export Citation Format

Share Document