scholarly journals Tackling the Taxonomic Challenges in the Family Scoliidae (Insecta, Hymenoptera) Using an Integrative Approach: A Case Study from Southern China

Insects ◽  
2021 ◽  
Vol 12 (10) ◽  
pp. 892
Author(s):  
Zhen Liu ◽  
Sheng-Jie Yang ◽  
Yu-Yuan Wang ◽  
Yan-Qiong Peng ◽  
Hua-Yan Chen ◽  
...  

Species of the family Scoliidae are larval parasitoids of scarabaeoid beetles and pollinators of various plants. Despite their great importance in pest biological control and plant pollination, the taxonomy and systematics of these parasitoids are far from clear. Some species of the family are extremely morphologically similar and difficult to identify, especially in males. In this study, an integrative taxonomic approach, combining morphology and molecular data, was used to discriminate the species of Scoliidae from southern China. In total, 52 COI sequences belonging to 22 morphospecies of 9 genera in two tribes were obtained. The COI sequences worked well for the identification of all the studied species, with intraspecific genetic distances generally less than 2%, while interspecific distances ranged between 5.3% and 20.8%. The delimitations of the problematic species and subspecies of Scolia and Megacampsomeris are well solved by COI sequences, suggesting that DNA barcoding could be a useful identification tool for Scoliidae. Based on both morphological and molecular evidence, we discovered one undescribed cryptic species of the polytypic species Solia (Discolia) superciliaris Saussure, 1864, five newly recorded species, i.e., Scolia (Discolia) sikkimensis Bingham, 1896, Sericocampsomeris flavomaculata Gupta and Jonathan, 1989, Megacampsomeris asiatica (Saussure, 1858), Megacampsomeris pulchrivestita (Cameron, 1902) and Megacampsomeris shillongensis (Betrem, 1928) and one pending subspecies of Scolia (Discolia) watanabei (Matsumura, 1912) from China. Our study indicates that such an integrative approach, combing both molecular and morphological evidence, is a potent tool to tackle the taxonomic challenges in the family Scoliidae, or even, in other diverse groups of Aculeata, of which sexual dimorphism and cryptic species are common.

2021 ◽  
pp. 269-278
Author(s):  
M. Lenguas Francavilla ◽  
L. Negrete ◽  
A. Martínez-Aquino ◽  
C. Damborenea ◽  
F. Brusa

Girardia Ball, 1974 is the most diverse and widely distributed genus of the family Dugesiidae (Platyhelminthes: Continenticola) in the Neotropical region. Seven out of the 52 species of the genus are known for Argentina. The Somuncurá Plateau is a region in northern Patagonia with several endemic flora and fauna, but little is known about the free-living Platyhelminthes. We describe two new species of Girardia partially inhabiting in sympatry in the Somuncurá Plateau: Girardia somuncura sp. nov. and Girardia tomasi sp. nov. The identification criteria that we followed was an integrative taxonomic approach based on morphological and molecular data. Thus, we used anatomical features focused on the reproductive system, together with a phylogenetic analysis, using a mitochondrial (COI barcode region) genetic marker. This study is the first phylogenetic analysis of the genus Girardia in which we include the southernmost representatives of America here described, thus making it possible to incorporate them in global phylogenies.


2018 ◽  
Vol 50 (5) ◽  
pp. 541-553 ◽  
Author(s):  
Emerson Luiz GUMBOSKI ◽  
Sionara ELIASARO ◽  
Mayara Camila SCUR ◽  
Aline Pedroso LORENZ-LEMKE ◽  
Rosa Mara BORGES DA SILVEIRA

AbstractThe new species Ramalina fleigiae from Brazil is described growing on rocks in riverbeds in high altitude grasslands of southern Brazil. It grows in areas with constant water flow, sometimes almost immersed, and always in exposed habitats. Through an integrative approach, the detailed description of R. fleigiae includes morphological, anatomical, ecological, chemical and molecular data. Ribosomal DNA-based phylogenies suggest that R. fleigiae is more closely related to a species that shares its habitat preference (R. laevigata) than to the morphologically and chemically similar R. exiguella and R. gracilis. Ramalina fleigiae and R. laevigata can be distinguished by thallus morphology (irregularly flat branches in R. fleigiae vs. flat to canaliculate in R. laevigata) and pattern of chondroid tissue, as genetic distances between them are compatible with the interspecific range. It is possible that many species of Ramalina still remain hidden within the morphological or chemical variation of currently accepted species. Combining ecological, anatomical and molecular data will improve our future understanding of this genus.


2018 ◽  
Vol 32 (6) ◽  
pp. 1298 ◽  
Author(s):  
Feng Zhang ◽  
Daoyuan Yu ◽  
Mark I. Stevens ◽  
Yinhuan Ding

Integrative taxonomic approaches are increasingly providing species-level resolution to ‘cryptic’ diversity. In the absence of an integrative taxonomic approach, formal species validation is often lacking because of inadequate morphological diagnoses. Colouration and chaetotaxy are the most commonly used characters in collembolan taxonomy but can cause confusion in species diagnoses because these characters often have large intraspecific variation. Here, we take an integrative approach to the genus Dicranocentrus in China where four species have been previously recognised, but several members of the genus have been morphologically grouped as a species complex based on having paired outer teeth on unguis and seven colour patterns. Molecular delimitations based on distance- and evolutionary models recovered four candidate lineages from three gene markers and revealed that speciation events likely occurred during the late Neogene (4–13million years ago). Comparison of intact dorsal chaetotaxy, whose homologies were erected on the basis of first instar larva, further validated these candidates as formal species: D. gaoligongensis, sp. nov., D. similis, sp. nov., D. pallidus, sp. nov. and D. varicolor, sp. nov., and increase the number of Dicranocentrus species from China to eight. Our study further highlights the importance of adequate taxonomy in linking morphological and molecular characters within integrative taxonomy.


2007 ◽  
Vol 76 (1) ◽  
pp. 35-54 ◽  
Author(s):  
Francesca Benzoni ◽  
Fabrizio Stefani ◽  
Jaroslaw Stolarski ◽  
Michel Pichon ◽  
Guillaume Mitta ◽  
...  

The phylogenetic relationships of the scleractinian genus Psammocora with the other genera traditionally included in the family Siderastreidae and some Fungiidae are assessed based on combined skeletal and molecular data. P. explanulata differs from the other examined congeneric species (P. contigua, P. digitata, P. nierstraszi , P. profundacella, P. superficialis, and P. stellata) in possessing interstomatous septa between adult corallites, costae, and in having continuous buttress-like structures joining septal faces (i.e., fulturae) which typically occur in fungiids. These characters are shared with Coscinaraea wellsi but not with the remainder of the examined siderastreids (the congeneric C. columna, and Anomastraea irregularis, Horastrea indica, Pseudosiderastrea tayamai, Siderastrea savignyana) whose septa are interconnected by typical synapticulae. Most of the examined species form septa with distinct transverse groups of centers of calcification, a biomineralization pattern typical of the Robusta clade. The observations on skeletal structures corroborate the results of the ITS2 and 5.8S molecular phylogeny. C. wellsi and P. explanulata are phylogenetically very close to each other and show closer genetic affinity with the examined Fungiidae (Halomitra pileus, Herpolitha limax, Fungia paumotensis, and Podabacia crustacea) than with the other species in the genera Psammocora and Coscinaraea, or with any other siderastreid. Our results show that neither Psammocora nor Coscinaraea are monophyletic genera. The high genetic distances between the species of Siderastreidae, especially between Pseudosiderastrea tayamai and Siderastrea savignyana on one side and the other genera on the other, suggest a deep divergence in the phylogenetic structure of the family.


2015 ◽  
Vol 90 (6) ◽  
pp. 639-646 ◽  
Author(s):  
A. Wyrobisz ◽  
J. Kowal ◽  
P. Nosal

AbstractThis paper focuses on the species diversity among the Trichostrongylidae Leiper, 1912 (Nematoda: Strongylida), and complexity of the family systematics. Polymorphism (subfamilies: Ostertagiinae, Cooperiinae and Haemonchinae), the presence of cryptic species (genus: Teladorsagia) and hybridization (genera: Cooperia, Haemonchus and Ostertagia) are presented and discussed, considering both morphological and molecular evidence. Some of these phenomena are common, nevertheless not sufficiently understood, which indicates the need for expanding the current state of knowledge thereof. Within the Trichostrongylidae, species distinction supported merely by morphological features is difficult, and requires confirmation by means of molecular methods. The parasitic nematode taxonomy is complicated mainly by the genus Teladorsagia, but complexity may also be expected among other Ostertagiinae (e.g. in the genera Ostertagia and Marshallagia). The data presented here show that the members of the Trichostrongylidae can significantly complicate unambiguous species identification. Hence, it is essential to consider the phenomena mentioned, to gather valid and comparable data on the biodiversity of this family.


ZooKeys ◽  
2020 ◽  
Vol 947 ◽  
pp. 71-102
Author(s):  
Ľuboš Hrivniak ◽  
Pavel Sroka ◽  
Jindřiška Bojková ◽  
Roman J. Godunko ◽  
Javid Imanpour Namin ◽  
...  

Combining morphological and molecular data in an integrative approach, three new mayfly species of Epeorus (Caucasiron) are described. These include Epeorus (Caucasiron) alborzicus Hrivniak & Sroka, sp. nov. and Epeorus (Caucasiron) shargi Hrivniak & Sroka, sp. nov. from northern Iran, and Epeorus (Caucasiron) zagrosicus Hrivniak & Sroka, sp. nov. from central Iran. They are unambiguously delimited using both distance-based and likelihood-based approaches in the analyses of barcode COI sequences. Each new species is compared with other species of the subgenus and morphological diagnostic characters are provided. Based on extensive sampling of streams throughout the country, the distribution and habitat preferences of all Caucasiron species in Iran are assessed. Altogether, there are now six species recorded, among them also E. (C.) nigripilosus Sinitshenkova, 1976 is reported for the first time in Iran. Five species are distributed in the Alborz Mts. in northern Iran, one species was found in the Zagros Mts. in central Iran.


2022 ◽  
pp. 1-61
Author(s):  
Ana Isabel Camacho ◽  
Paloma Mas-Peinado ◽  
E. Karen López-Estrada ◽  
Beatriz A. Dorda ◽  
Isabel Rey

Abstract The “Iberobathynella group”, or Iberobathynellini tribe, is a complex of six genera consisting of 33 nominal species and several cryptic species with an amphiatlantic distribution (in Europe, North Africa and North America). A modern systematic revision of this group of subterranean crustaceans is presented here. A phylogenetic and biogeographic study using morphological and molecular data (mitocondrial coi and nuclear 18S) was carried out and allowed to a) re-evaluate the taxonomic status and validity of previously erected subtribes, genera and subgenera that show congruence in the data; b) assess whether the identified mitochondrial lineages represent cryptic species; c) provide a plausible phylogenetic hypothesis for the relationships within Iberobathynellini and with the other two genera of the family Parabathynellidae that inhabit North America and Europe (Montanabathynella and Parabathynella, respectively); d) propose a plausible temporal and historical framework (paleobiogeographic scenario) for the diversification and evolution of the Iberobathynellini tribe based on the current distribution of morphotypes and their estimated times of divergence. Our results show that in parabathynellids, molecular and morphological divergences are not always congruent. Subtribe and subgenus are invalid categories so they must be eliminated. Paraiberobathynella genus needs to be revisited. The molecular dating results support the early divergence of the Iberobathynellini Tribe (Upper Cretaceous, around 78 Mya) and the vicariance by plate tectonics as main factor to explain the amphi-Atlantic distribution shown by this ancient subterranean crustacean group. Since there are species morphologically very similar to I. magna and I. imuniensis, but genetically different, we can ensure the existence of at least three cryptic species. Texanobathynella is undoubtedly a valid genus distinct from Iberobathynella. Montanabathynella and Parabathynella are two well-differentiated genera closely related to the Iberobathynellini tribe.


PLoS ONE ◽  
2020 ◽  
Vol 15 (12) ◽  
pp. e0243393
Author(s):  
Lucas Henrique de Almeida ◽  
Pitágoras da Conceição Bispo

The study of complementary sources of biological variation (e.g. morphological, molecular) has allowed a better understanding of biodiversity through the construction of an integrative taxonomy. Using this approach, specimens from the Paranapiacaba Mountains, southeastern Brazil, were studied to update the knowledge on the stonefly family Perlidae from the region, characterize the species, and make associations between nymphs and adults using a fragment of the mitochondrial cytochrome c oxidase subunit I (COI) gene. The study also discusses the implications of integrative taxonomy and teneral specimens for the study of South American Perlidae. The molecular data were analyzed using Bayesian inference, Neighbor-joining, and delimiting species methods. Our results revealed that, in general, there was a morphological and molecular congruence between species. In the Paranapiacaba Mountains, three genera and 15 species were recorded: Anacroneuria boraceiensis Froehlich 2004, A. debilis (Pictet 1841) (new record), A. fiorentini De Ribeiro and Froehlich 2007 (new record), A. flintorum Froehlich 2002, A. iporanga Bispo and Froehlich 2004, A. itajaimirim Bispo and Froehlich 2004, A. polita (Burmeister 1913), A. subcostalis Klapálek 1921, A. tupi Bispo and Froehlich 2004 (with a description of the nymph), Kempnyia auberti Froehlich 1996, K. colossica (Navás 1934), K. flava Klapálek 1916, K. neotropica (Jacobson and Bianchi 1905) (including its new junior synonym K. petersorum Froehlich 1996), Kempnyia sp., and Macrogynoplax veneranda Froehlich 1984. COI sequences were obtained for 11 species, five of which had nymphs associated with adults. Among the five associated nymphs, the nymph of A. tupi is described here. The results of this study indicate that the color of adult teneral specimens differs from that of mature specimens. Given this, the synonym of K. neotropica and K. petersorum was proposed since these species have high morphological and molecular similarities and differ only in color patterns. In addition, the previous record of A. petersi Froehlich 2002 from the Paranapiacaba Mountains was invalidated since it was considered a teneral specimen of A. flintorum. These results suggest that the development of an integrative taxonomy is essential to continue advancing the study of Perlidae diversity in South America.


2020 ◽  
Vol 40 (4) ◽  
pp. 401-411 ◽  
Author(s):  
Robert E Ditter ◽  
Luis M Mejía-Ortíz ◽  
Heather D Bracken-Grissom

Abstract Barbouriidae Christoffersen, 1987 is a family comprised of 4 genera and 11 species of enigmatic shrimps restricted to anchialine or marine caves whose evolutionary history and relationships remain elusive. We investigated the evolutionary relationships among members of Barbouriidae with the inclusion of four genera and nine species, and newly collected material from Belize, the Bahamas, and the Yucatán Peninsula, Mexico. Phylogenetic analyses based on seven mitochondrial and nuclear gene regions and genetic distances calculated using partial 16S gene regions have identified a need to revisit the relationships and classification within Barbouriidae. More specifically, we find evidence to suggest Janicea Manning & Hart, 1984 as a junior synonym of Parhippolyte Borradaile, 1900, B. yanezi Mejía, Zarza & López, 2008 as a synonym of Barbouria cubensis (von Martens, 1872), and define two new subfamilies, Calliasmatinae Holthuis, 1973 and Barbouriinae Christoffersen, 1987. Included is a dichotomous key for the species of Barbouriidae that summarizes previous literature and includes new morphological characters. Our findings shed light on existing inaccuracies and gaps in molecular data from barbouriids. We also provide further clarity into evolutionary relationships among genera of Barbouriidae and their allies, suggesting phylogeographic divisions within the family. Our findings suggest an early Atlantic-Pacific divide among genera originating from a shallow-water reef ancestor.


Zootaxa ◽  
2017 ◽  
Vol 4303 (2) ◽  
pp. 284 ◽  
Author(s):  
SIMÓN ANGUITA-SALINAS ◽  
RODRIGO M. BARAHONA-SEGOVIA ◽  
ELIE POULIN ◽  
ALVARO ZÚÑIGA-REINOSO

The genus Ectinogonia Spinola, 1837 is a genus mainly found in Chile; it currently contains 17 species. Recent exploration in the Andes Mountain Range of the Bio Bio Region in Chile have resulted in the collection of specimens slightly different morphologically from all previously described species. The aim of this paper is to describe this new species of Ectinogonia using morphological and genetic evidence. To establish differences between species we described the external morphology and compared it to species that are morphologically similar (i.e. E. buqueti Spinola 1837 and E. intermedia Kerremans 1903). We also measured the genetic differences in COI sequences, constructing a distance matrix in which we compared it to species that are morphologically similar (E. buqueti and E. intermedia) and other species found in the same region (E. speciosa oscuripennis Moore 1994). We found that E. cryptica sp. n. differs from E. buqueti (which previously contained E. cryptica sp. n.) in pronotum and elytral patterns. The genetic distance matrix shows that E. cryptica sp. n. differs by 4.6% from all other Ectinogonia species compared, supporting the morphological evidence. 


Sign in / Sign up

Export Citation Format

Share Document