scholarly journals Influence of Microclimate Factors on Halyomorpha halys Dehydration

Insects ◽  
2021 ◽  
Vol 12 (10) ◽  
pp. 897
Author(s):  
Francesca Grisafi ◽  
Giulia Papa ◽  
Mario Barbato ◽  
Sergio Tombesi ◽  
Ilaria Negri

Understanding the interaction between insects and microclimate can be essential in order to plan informed and efficient treatments against agricultural pests. Microclimatic factors such as humidity and temperature can influence the population dynamics of the invasive agricultural pest Halyomorpha halys, the brown marmorated stink bug. The aim of this work was to evaluate the level of transpiration of H. halys in dry, normal and humid microclimates according to the sex, physiological conditions and developmental stage of individuals. Water loss during diapause and the effect of population density on insects’ transpiration were also assessed, as were the nutritional preferences of adults upon exiting diapause. Our data demonstrate that microclimatic conditions significantly influence the transpiration of this pest species. The effect of sex and feeding status on insects’ water loss is marked, while population density does not influence water loss in diapausing individuals. The first nutritional need of the overwintering generations is represented by hydration, likely due to the water loss during diapause.

2019 ◽  
Vol 29 (1) ◽  
Author(s):  
Elif Tozlu ◽  
Islam Saruhan ◽  
Göksel Tozlu ◽  
Recep Kotan ◽  
Fatih Dadaşoğlu ◽  
...  

AbstractThe brown marmorated stink bug, Halyomorpha halys (Stål, 1855) (Hemiptera: Pentatomidae), is an invasive harmful pest species due to its economic losses. Its wide host range and continuous movement make its control difficult with insecticides. Biological control has recently gained importance due to the negative aspects of chemical control. The study evaluated the biological control tools by testing the entomopathogens against the pest by 11 bacteria strains and 1 fungal isolate. Brevibacillus, Bacillus, Pantoea, Vibrio, Pseudomonas, and Beauveria were tested against the nymphs of H. halys under controlled conditions. All applied entomopathogens had potentials for controlling H. halys. Mortality rates of 75 and 100% were obtained by the bacteria strains and 76.19% by the fungus, B. bassiana. Successfully reaching a 100% control rate, the bacterial isolates of the Bacillus cereus GC subgroup B and Pantoea agglomerans GC subgroup were recorded to have a greater potential than the others.


Plant Disease ◽  
2019 ◽  
Vol 103 (6) ◽  
pp. 1189-1195 ◽  
Author(s):  
Joseph Opoku ◽  
Nathan M. Kleczewski ◽  
Kelly A. Hamby ◽  
D. Ames Herbert ◽  
Sean Malone ◽  
...  

Brown marmorated stink bug (Halyomorpha halys Stål) is an invasive agricultural pest that causes severe damage to many crops. To determine potential associations between H. halys feeding damage, Fusarium infection, and mycotoxin contamination in field corn, a field survey was conducted in eight counties in Virginia. Results indicated an association between H. halys feeding damage and fumonisin contamination. Subsequent field experiments in Delaware, Maryland, and Virginia examined the ability of H. halys to increase Fusarium verticillioides (Sacc.) Nirenberg infection and fumonisin concentrations in corn. At the milk stage, H. halys (0 or 4 adults) and Fusarium (with or without F. verticillioides inoculum) treatments were applied to bagged ears in a two by two factorial randomized complete block design with 12 replicates. H. halys treatments increased levels of feeding damage (P < 0.0001) and Fusarium infection (P = 0.0380). Interaction between H. halys and Fusarium treatments influenced severity of infection (P = 0.0018) and fumonisin concentrations (P = 0.0360). Results suggest H. halys has the ability to increase both Fusarium infection and fumonisin concentrations in field corn. Further studies are needed to understand mechanisms by which H. halys increases fumonisin and to develop management strategies to mitigate impacts of H. halys on field corn in the region.


Insects ◽  
2020 ◽  
Vol 11 (2) ◽  
pp. 108 ◽  
Author(s):  
Byju N. Govindan ◽  
William D. Hutchison

Temperature is a critical single factor influencing insect population dynamics, and is foundational for improving our understanding of the phenology of invasive species adapting to new agroecosystems or in the process of range expansion. An age-stage, two-sex life table was therefore developed to analyze fundamental demographic features such as development, survival, and reproduction of a Minnesota-acclimated population of the invasive brown marmorated stink bug (Halyomorpha halys), in the north central USA. All salient life history parameters were estimated to better understand the population growth potential of H. halys at the current limit of its northern range in North America. We examined the effect of selected constant temperatures on immature development and survival (15–39 °C), adult reproduction and longevity (17–36 °C) of H. halys in the laboratory. The Minnesota population developed faster and survived at higher rates relative to a population that had previously established in Pennsylvania, USA. Mean generation time for the Minnesota population was minimized at 30 °C, while survival and fecundity were maximized at 27 and 23 °C, respectively. Given these findings, we assessed the effect of temperature on the intrinsic rate of increase ( r m ), the life table parameter that integrates the effects of temperature on development, survival, and reproduction. A Ratkowsky model predicted r m was maximized (0.0899) at 27.5 °C. We discuss the implications of our findings for understanding population growth rates for H. halys in the context of a warming climate, and potential to emerge as a serious crop pest in the Midwest U.S. region.


Sign in / Sign up

Export Citation Format

Share Document