scholarly journals Octyl Gallate as an Intervention Catalyst to Augment Antifungal Efficacy of Caspofungin

J ◽  
2018 ◽  
Vol 1 (1) ◽  
pp. 19-28 ◽  
Author(s):  
Jong Kim ◽  
Kathleen Chan ◽  
Luisa Cheng

Filamentous fungi such as Aspergillus spp. are opportunistic pathogens, which cause highly invasive infections, especially in immunocompromised individuals. Control of such fungal pathogens is increasingly problematic due to the small number of effective drugs available for treatment. Moreover, the increased incidence of fungal resistance to antifungal agents makes this problem a global human health issue. The cell wall integrity system of fungi is the target of antimycotic drugs echinocandins, such as caspofungin (CAS). However, echinocandins cannot completely inhibit the growth of filamentous fungal pathogens, which results in survival/escape of fungi during treatment. Chemosensitization was developed as an alternative intervention strategy, where co-application of CAS with the intervention catalyst octyl gallate (OG; chemosensitizer) greatly enhanced CAS efficacy, thus achieved ≥99.9% elimination of filamentous fungi in vitro. Based on hypersensitive responses of Aspergillus antioxidant mutants to OG, it is hypothesized that, besides destabilizing cell wall integrity, the redox-active characteristic of OG may further debilitate the fungal antioxidant system.

Author(s):  
Jong H. Kim ◽  
Kathleen L. Chan ◽  
Luisa W. Cheng

Filamentous fungi such as Aspergillus spp. are opportunistic pathogens, which cause highly invasive infections, especially in immunocompromised individuals. Control of such fungal pathogens is increasingly problematic due to the small number of effective drugs available for treatment. Moreover, the increased incidence of fungal resistance to antifungal agents makes this problem a global human health issue. The cell wall integrity system of fungi is the target of antimycotic drugs echinocandins, such as caspofungin (CAS). However, echinocandins cannot completely inhibit the growth of filamentous fungal pathogens, which results in survival/escape of fungi during treatment. Chemosensitization was developed as an alternative intervention strategy, where co-application of CAS with the intervention catalyst octyl gallate (OG; chemosensitizer) greatly enhanced CAS efficacy, thus achieved ≥ 99.9% elimination of filamentous fungi in vitro. Based on hypersensitive responses of Aspergillus antioxidant mutants to OG, it is hypothesized that, besides destabilizing cell wall integrity, the redox-active characteristic of OG may further debilitate fungal antioxidant system.


1998 ◽  
Vol 42 (11) ◽  
pp. 2863-2869 ◽  
Author(s):  
E. Herreros ◽  
C. M. Martinez ◽  
M. J. Almela ◽  
M. S. Marriott ◽  
F. Gomez De Las Heras ◽  
...  

ABSTRACT GM 193663, GM 211676, GM 222712, and GM 237354 are new semisynthetic derivatives of the sordarin class. The in vitro antifungal activities of GM 193663, GM 211676, GM 222712, and GM 237354 against 111 clinical yeast isolates of Candida albicans,Candida kefyr, Candida glabrata, Candida parapsilosis, Candida krusei, and Cryptococcus neoformans were compared. The in vitro activities of some of these compounds against Pneumocystis carinii, 20 isolates each of Aspergillus fumigatus and Aspergillus flavus, and 30 isolates of emerging less-common mold pathogens and dermatophytes were also compared. The MICs of GM 193663, GM 211676, GM 222712, and GM 237354 at which 90% of the isolates were inhibited (MIC90s) were 0.03, 0.03, 0.004, and 0.015 μg/ml, respectively, for C. albicans, including strains with decreased susceptibility to fluconazole; 0.5, 0.5, 0.06, and 0.12 μg/ml, respectively, for C. tropicalis; and 0.004, 0.015, 0.008, and 0.03 μg/ml, respectively, forC. kefyr. GM 222712 and GM 237354 were the most active compounds against C. glabrata, C. parapsilosis, and Cryptococcus neoformans. AgainstC. glabrata and C. parapsilosis, the MIC90s of GM 222712 and GM 237354 were 0.5 and 4 μg/ml and 1 and 16 μg/ml, respectively. The MIC90s of GM 222712 and GM 237354 againstCryptococcus neoformans were 0.5 and 0.25 μg/ml, respectively. GM 193663, GM 211676, GM 222712, and GM 237354 were extremely active against P. carinii. The efficacies of sordarin derivatives against this organism were determined by measuring the inhibition of the uptake and incorporation of radiolabelled methionine into newly synthesized proteins. All compounds tested showed 50% inhibitory concentrations of <0.008 μg/ml. Against A. flavus and A. fumigatus, the MIC90s of GM 222712 and GM 237354 were 1 and 32 μg/ml and 32 and >64 μg/ml, respectively. In addition, GM 237354 was tested against the most important emerging fungal pathogens which affect immunocompromised patients. Cladosporium carrioni, Pseudallescheria boydii, and the yeast-like fungi Blastoschizomyces capitatus and Geotrichum clavatum were the most susceptible of the fungi to GM 237354, with MICs ranging from ≤0.25 to 2 μg/ml. The MICs of GM 237354 against Trichosporon beigelii and the zygomycetesAbsidia corymbifera, Cunninghamella bertholletiae, and Rhizopus arrhizus ranged from ≤0.25 to 8 μg/ml. Against dermatophytes, GM 237354 MICs were ≥2 μg/ml. In summary, we concluded that some sordarin derivatives, such as GM 222712 and GM 237354, showed excellent in vitro activities against a wide range of pathogenic fungi, includingCandida spp., Cryptococcus neoformans, P. carinii, and some filamentous fungi and emerging invasive fungal pathogens.


1999 ◽  
Vol 19 (11) ◽  
pp. 7651-7660 ◽  
Author(s):  
Christopher P. Mattison ◽  
Scott S. Spencer ◽  
Kurt A. Kresge ◽  
Ji Lee ◽  
Irene M. Ota

ABSTRACT Mitogen-activated protein kinases (MAPKs) are inactivated by dual-specificity and protein tyrosine phosphatases (PTPs) in yeasts. InSaccharomyces cerevisiae, two PTPs, Ptp2 and Ptp3, inactivate the MAPKs, Hog1 and Fus3, with different specificities. To further examine the functions and substrate specificities of Ptp2 and Ptp3, we tested whether they could inactivate a third MAPK, Mpk1, in the cell wall integrity pathway. In vivo and in vitro evidence indicates that both PTPs inactivate Mpk1, but Ptp2 is the more effective negative regulator. Multicopy expression of PTP2, but not PTP3, suppressed growth defects due to the MEK kinase mutation, BCK1-20, and the MEK mutation,MKK1-386, that hyperactivate this pathway. In addition, deletion of PTP2, but not PTP3, exacerbated growth defects due to MKK1-386. Other evidence supported a role for Ptp3 in this pathway. Expression of MKK1-386 was lethal in the ptp2Δ ptp3Δ strain but not in either single PTP deletion strain. In addition, the ptp2Δ ptp3Δ strain showed higher levels of heat stress-induced Mpk1-phosphotyrosine than the wild-type strain or strains lacking either PTP. The PTPs also showed differences in vitro. Ptp2 was more efficient than Ptp3 at binding and dephosphorylating Mpk1. Another factor that may contribute to the greater effectiveness of Ptp2 is its subcellular localization. Ptp2 is predominantly nuclear whereas Ptp3 is cytoplasmic, suggesting that active Mpk1 is present in the nucleus. Last, PTP2 but not PTP3 transcript increased in response to heat shock in a Mpk1-dependent manner, suggesting that Ptp2 acts in a negative feedback loop to inactivate Mpk1.


2019 ◽  
Vol 2 (2) ◽  
pp. 31 ◽  
Author(s):  
Jong H. Kim ◽  
Kathleen L. Chan ◽  
Luisa W. Cheng ◽  
Lisa A. Tell ◽  
Barbara A. Byrne ◽  
...  

Current antifungal interventions have often limited efficiency in treating fungal pathogens, particularly those resistant to commercial drugs or fungicides. Antifungal drug repurposing is an alternative intervention strategy, whereby new utility of various marketed, non-antifungal drugs could be repositioned as novel antifungal agents. In this study, we investigated “chemosensitization” as a method to improve the efficiency of antifungal drug repurposing, wherein combined application of a second compound (viz., chemosensitizer) with a conventional, non-antifungal drug could greatly enhance the antifungal activity of the co-applied drug. Redox-active natural compounds or structural derivatives, such as thymol (2-isopropyl-5-methylphenol), 4-isopropyl-3-methylphenol, or 3,5-dimethoxybenzaldehyde, could serve as potent chemosensitizers to enhance antifungal activity of the repurposed drug bithionol. Of note, inclusion of fungal mutants, such as antioxidant mutants, could also facilitate drug repurposing efficiency, which is reflected in the enhancement of antifungal efficacy of bithionol. Bithionol overcame antifungal (viz., fludioxonil) tolerance of the antioxidant mutants of the human/animal pathogen Aspergillus fumigatus. Altogether, our strategy can lead to the development of a high efficiency drug repurposing design, which enhances the susceptibility of pathogens to drugs, reduces time and costs for new antifungal development, and abates drug or fungicide resistance.


2020 ◽  
Author(s):  
Ning Liu ◽  
Linlu Qi ◽  
Manna Huang ◽  
Deng Chen ◽  
Changfa Yin ◽  
...  

AbstractPlant fungal pathogens secrete numerous proteins into the apoplast at the plant–fungus contact sites to facilitate colonization. Only a few secreted proteins were functionally characterized in Magnaporthe oryzae, the fungal pathogen causing rice blast disease worldwide. ALG3 is an α-1, 3-mannosyltransferase function in N-glycan synthesis for secreted N-glycosylated proteins, and the Δalg3 mutants show strong defects in cell wall integrity and fungal virulence, indicating a potential effect on the secretion of multiple proteins. In this study, we compared the secretome of wild type and Δalg3 mutants, and identified 51 proteins that require ALG3 for proper secretion. These are predicted to be involved in metabolic processes, interspecies interactions, cell wall organization, and response to chemicals. The tested secreted proteins localized at the apoplast region surrounding the fungal infection hyphae. Moreover, the N-glycosylation of candidate proteins was significantly changed in the Δalg3 mutant, leading to the reduction of protein secretion and abnormal protein localization. Furthermore, we tested the function of two genes, one is a previously reported M. oryzae gene Invertase 1 (INV1) encoding a secreted invertase, and the other one is a gene encoding an Acid mammalian chinitase (AMCase). The fungal virulence was significantly reduced and the cell wall integrity was altered in the Δinv1 and Δamcase mutant strains. Elucidation of the comparative secretome of M. oryzae improves our understanding of the proteins that require ALG3 for secretion, and of their function in fungal virulence and cell wall integrity.


2019 ◽  
Vol 10 (8) ◽  
pp. 4674-4684 ◽  
Author(s):  
Konstantinos Korompokis ◽  
Niels De Brier ◽  
Jan A. Delcour

Intact wheat endosperm cell walls reduce intracellular starch swelling and retard its in vitro digestion by acting as physical barriers to amylolytic enzymes.


2000 ◽  
Vol 44 (9) ◽  
pp. 2547-2548 ◽  
Author(s):  
David A. Stevens

ABSTRACT The interaction between inhibitors of components of the fungal cell wall, glucan and chitin, was studied in vitro with the respective synthase enzyme inhibitors LY 303366 and nikkomycin Z. WithAspergillus fumigatus synergy was noted for inhibition and killing, and synergistic activity was also noted for some isolates of other species presently regarded as difficult to treat.


2007 ◽  
Vol 6 (12) ◽  
pp. 2260-2268 ◽  
Author(s):  
Hui Zhou ◽  
Hongyan Hu ◽  
Lijuan Zhang ◽  
Ruoyu Li ◽  
Haomiao Ouyang ◽  
...  

ABSTRACT Protein O-mannosyltransferases initiate O mannosylation of secretory proteins, which are of fundamental importance in eukaryotes. In this study, the PMT gene family of the human fungal pathogen Aspergillus fumigatus was identified and characterized. Unlike the case in Saccharomyces cerevisiae, where the PMT family is highly redundant, only one member of each PMT subfamily, namely, Afpmt1, Afpmt2, and Afpmt4, is present in A. fumigatus. Mutants with a deletion of Afpmt1 are viable. In vitro and in vivo activity assays confirmed that the protein encoded by Afpmt1 acts as an O-mannosyltransferase (AfPmt1p). Characterization of the ΔAfpmt1 mutant showed that a lack of AfPmt1p results in sensitivity to elevated temperature and defects in growth and cell wall integrity, thereby affecting cell morphology, conidium formation, and germination. In a mouse model, Afpmt1 was not required for the virulence of A. fumigatus under the experimental conditions used.


2016 ◽  
Vol 7 ◽  
Author(s):  
Nathan T. Reem ◽  
Gennady Pogorelko ◽  
Vincenzo Lionetti ◽  
Lauran Chambers ◽  
Michael A. Held ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document