scholarly journals Relationship between Medium-Term Changes in Intraocular Lens Position and Refraction after Cataract Surgery with Two Different Models of Monofocal Lenses

2021 ◽  
Vol 10 (17) ◽  
pp. 3856
Author(s):  
Hideki Fukumitsu ◽  
Vicent J. Camps ◽  
Sara Miraflores ◽  
David P. Piñero

The aim of this prospective descriptive study was to characterize the variations of the clinical effective lens position (ELP) (considering paraxial optics and postoperative data) and the intraocular lens (IOL) position, using “eye” data gathered from a 6-month follow-up of patients who underwent uneventful cataract surgery. Patients were implanted with two different monofocal IOLs: AcrySof IQ SN60WF (Alcon) (Group 1, 247 eyes) and Akreos MI60L (Bausch & Lomb) (Group 2, 104 eyes). No significant differences were found between groups concerning spherical equivalent (SE), axial length, and clinical ELP changes, from 1 to 6 months after surgery (p ≥ 0.516). A more positive change in postoperative anterior chamber depth was found in Group 2, but the difference did not reach statistical significance (p = 0.065). No significant moderate to strong correlations were found between the changes in clinical ELP and preoperative data. The correlation between the changes in SE and clinical ELP over time was strong and statistically significant (groups 1 and 2: r = 0.957 and r = 0.993, p < 0.001). In conclusion, changes in refraction from 1 to 6 months after cataract surgery, with single-piece monofocal IOLs, are not clinically relevant, which correlates with the presence of good positional stability. These changes cannot be predicted preoperatively and considered in IOL power calculations.

2020 ◽  
Vol 17 (2) ◽  
pp. 233-242
Author(s):  
Juanita Noeline Chui ◽  
Keith Ong

Purpose: Achieving the desired post-operative refraction in cataract surgery requires accurate calculations for intraocular lens (IOL) power. Latest-generation formulae use anterior-chamber depth (ACD)—the distance from the corneal apex to the anterior surface of the lens—as one of the parameters to predict the post-operative IOL position within the eye, termed the effective lens position (ELP). Significant discrepancies between predicted and actual ELP result in refractive surprise. This study aims to improve the predictability of ELP. We hypothesise that predictions based on the distance from the corneal apex to the mid-sagittal plane of the cataractous lens would more accurately reflect the position of the principal plane of the non-angulated IOL within the capsular bag. Accordingly, we propose that predictions derived from ACD + ½LT (length thickness) would be superior to those from ACD alone. Design: Retrospective cohort study, comparing ELP predictions derived from ACD to aproposed prediction parameter. Method: This retrospective study includes data from 162 consecutive cataract surgery cases, with posterior-chamber IOL (AlconSN60WF) implantation. Pre- and postoperative biometric measurements were made using the IOLMaster700 (ZEISS, Jena, Germany). The accuracy and reliability of ELP predictions derived from ACD and ACD + ½LT were compared using software-aided analyses. Results: An overall reduction in average ELP prediction error (PEELP) was achieved using the proposed parameter (root-mean-square-error [RMSE] = 0.50 mm), compared to ACD (RMSE = 1.57 mm). The mean percentage PEELP, comparing between eyes of different axial lengths, was 9.88% ± 3.48% and −34.9% ± 4.79% for predictions derived from ACD + ½LT and ACD, respectively. A 44.10% ± 5.22% mean of differences was observed (p < 0.001). Conclusion: ACD + ½LT predicts ELP with greater accuracy and reliability than ACD alone; its use in IOL power calculation formulae may improve refractive outcomes.


2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
Tsukasa Satou ◽  
Kimiya Shimizu ◽  
Shuntaro Tsunehiro ◽  
Akihito Igarashi ◽  
Sayaka Kato ◽  
...  

Purpose. This study was performed to investigate the relationships among crystalline lens shape, actual intraocular lens (IOL) position, and crystalline lens thickness (LT), as measured by anterior segment optical coherence tomography (AS-OCT), and to determine anterior ocular segment parameters that predict postoperative IOL position. Methods. Seventy-nine eyes of 79 patients who underwent uneventful cataract surgery were enrolled. For crystalline lens preoperative anterior segment data, the LT, and anterior, equatorial, and posterior surface depths (ASD, ESD, and PSD, respectively) of crystalline lenses were quantitatively determined. For postoperative anterior segment data, the actual IOL position was quantified. Moreover, the following correlations were analyzed: LT with the ASD, ESD, PSD, and IOL position; IOL position with the ASD, ESD, and PSD; and refractive prediction error with the difference between the predicted postoperative anterior chamber depth (ACD) of the SRK/T formula and the IOL position, ASD, ESD, and PSD (each depth minus the predicted postoperative ACD of the SRK/T formula). Results. The LT was significantly correlated with the ASD (r = -0.65) and PSD (r = 0.41), whereas it was not correlated with the ESD or IOL position. The IOL position was significantly correlated with the ASD (r = 0.67), ESD (r = 0.72), and PSD (r = 0.74). The refractive prediction error was significantly correlated with the difference between the predicted postoperative ACD of the SRK/T formula and the IOL position (r = 0.65), ASD (r = 0.46), ESD (r = 0.54), and PSD (r = 0.58). Conclusions. The ESD and PSD obtained using AS-OCT were highly correlated with the IOL position and significantly correlated with the refractive prediction error. These findings suggest that the ESD and PSD may enhance the accuracy of actual IOL position prediction.


2020 ◽  
Author(s):  
Tingyang Li ◽  
Kevin Yang ◽  
Joshua Stein ◽  
Nambi Nallasamy

Purpose: To develop a method for predicting postoperative anterior chamber depth (ACD) in cataract surgery patients based on preoperative biometry, demographics, and intraocular lens (IOL) power. Methods: Patients who underwent cataract surgery and had both preoperative and postoperative biometry measurements were included. Patient demographics and IOL power were collected from the Sight Outcomes Research Collaborative (SOURCE) database. A gradient boosting decision tree model was developed to predict the postoperative ACD. The mean absolute error (MAE) and median absolute error (MedAE) were used as evaluation metrics. The performance of the proposed method was compared to five existing formulas. Results: 847 patients were assigned randomly in a 4:1 ratio to a training/validation set (678 patients) and a testing set (169 patients). Using preoperative biometry and patient sex as predictors, the presented method achieved an MAE of 0.106 (SD: 0.098) on the testing set, and a MedAE of 0.082. MAE was significantly lower than that of the five existing methods (p < 0.01). When keratometry was excluded, our method attained an MAE of 0.123 (SD: 0.109), and a MedAE of 0.093. When IOL power was used as an additional predictor, our method achieved an MAE of 0.105 (SD: 0.091) and a MedAE of 0.080. Conclusions: The presented machine learning method achieved accuracy surpassing that of previously reported methods in the prediction of postoperative ACD. Translational Relevance: Increasing accuracy of postoperative ACD prediction with the presented algorithm has the potential to improve refractive outcomes in cataract surgery.


2021 ◽  
Vol 37 (5) ◽  
pp. 324-330
Author(s):  
Pingjun Chang ◽  
Xiuyuan Li ◽  
Dongjie Chen ◽  
Zhizi Xu ◽  
Xixia Ding ◽  
...  

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Shiva Pirhadi ◽  
Keivan Maghooli ◽  
Khosrow Jadidi

Abstract The aim of this study is to determine the customized refractive index of ectatic corneas and also propose a method for determining the corneal and IOL power in these eyes. Seven eyes with moderate and severe corneal ectatic disorders, which had been under cataract surgery, were included. At least three months after cataract surgery, axial length, cornea, IOL thickness and the distance between IOL from cornea, and aberrometry were measured. All the measured points of the posterior and anterior parts of the cornea converted to points cloud and surface by using the MATLAB and Solidworks software. The implanted IOLs were designed by Zemax software. The ray tracing analysis was performed on the customized eye models, and the corneal refractive index was determined by minimizing the difference between the measured aberrations from the device and resulted aberrations from the simulation. Then, by the use of preoperative corneal images, corneal power was calculated by considering the anterior and posterior parts of the cornea and refractive index of 1.376 and the customized corneal refractive index in different regions and finally it was entered into the IOL power calculation formulas. The corneal power in the 4 mm region and the Barrett formula resulted the prediction error of six eyes within ± 1 diopter. It seems that using the total corneal power along with the Barrett formula can prevent postoperative hyperopic shift, especially in eyes with advanced ectatic disorders.


2016 ◽  
Vol 2016 ◽  
pp. 1-6
Author(s):  
Nihat Polat ◽  
Abuzer Gunduz

Purpose.To obtain information about effect of cycloplegia on keratometry and biometry in keratoconus.Methods.48 keratoconus (Group 1) and 52 healthy subjects (Group 2) were included in the study. We measured the flat meridian of the anterior corneal surface (K1), steep meridian of the anterior corneal surface (K2), lens thickness (LT), anterior chamber depth (ACD), and axial length (AL) using the Lenstar LS 900 before and after cycloplegia.Results.The median K1 in Group 1 was 45.64 D before and 45.42 D after cycloplegia, and the difference was statistically significant (P<0.05). The median K2 in Group 1 was 50.96 D before and 50.17 D after cycloplegia, and the difference was significant (P<0.05). The median K1 and K2 in Group 2 were 42.84 and 44.49 D, respectively, before cycloplegia, and 42.84 and 44.56 D after cycloplegia, and the differences were not statistically significant (allP>0.05). There were significant differences in SE, LT, ACD, and RLP between before and after cycloplegia in either Group 1 (allP<0.05) or Group 2 (allP<0.05). There were not statistically significant differences in AL between before cycloplegia and after cycloplegia in either Group 1 (P=0.533) or group 2 (P=0.529).Conclusions.Flattened corneal curvature and increase in ACD following cycloplegia in keratoconus patients were detected.


2018 ◽  
Vol 9 (2) ◽  
pp. 264-268
Author(s):  
Tao Ming Thomas Chia ◽  
Hoon C. Jung

We report a case of patient dissatisfaction after sequential myopic and hyperopic LASIK in the same eye. We discuss the course of management for this patient involving eventual cataract extraction and intraocular lens (IOL) implantation with attention to the IOL power calculation method used.


Sign in / Sign up

Export Citation Format

Share Document