scholarly journals Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS): An Overview

2021 ◽  
Vol 10 (20) ◽  
pp. 4786
Author(s):  
Undine-Sophie Deumer ◽  
Angelica Varesi ◽  
Valentina Floris ◽  
Gabriele Savioli ◽  
Elisa Mantovani ◽  
...  

Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a chronic systemic disease that manifests via various symptoms such as chronic fatigue, post-exertional malaise, and cognitive impairment described as “brain fog”. These symptoms often prevent patients from keeping up their pre-disease onset lifestyle, as extended periods of physical or mental activity become almost impossible. However, the disease presents heterogeneously with varying severity across patients. Therefore, consensus criteria have been designed to provide a diagnosis based on symptoms. To date, no biomarker-based tests or diagnoses are available, since the molecular changes observed also largely differ from patient to patient. In this review, we discuss the infectious, genetic, and hormonal components that may be involved in CFS pathogenesis, we scrutinize the role of gut microbiota in disease progression, we highlight the potential of non-coding RNA (ncRNA) for the development of diagnostic tools and briefly mention the possibility of SARS-CoV-2 infection causing CFS.

Biomolecules ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 185
Author(s):  
Maria Eugenia Ariza

Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) or Systemic Exertion Intolerance Disease (SEID) is a chronic multisystem illness of unconfirmed etiology. There are currently no biomarkers and/or signatures available to assist in the diagnosis of the syndrome and while numerous mechanisms have been hypothesized to explain the pathology of ME/CFS, the triggers and/or drivers remain unknown. Initial studies suggested a potential role of the human herpesviruses especially Epstein-Barr virus (EBV) in the disease process but inconsistent and conflicting data led to the erroneous suggestion that these viruses had no role in the syndrome. New studies using more advanced approaches have now demonstrated that specific proteins encoded by EBV could contribute to the immune and neurological abnormalities exhibited by a subgroup of patients with ME/CFS. Elucidating the role of these herpesvirus proteins in ME/CFS may lead to the identification of specific biomarkers and the development of novel therapeutics.


2013 ◽  
Vol 49 (2) ◽  
pp. 741-756 ◽  
Author(s):  
Gerwyn Morris ◽  
Michael Berk ◽  
Piotr Galecki ◽  
Michael Maes

2015 ◽  
Vol 2015 ◽  
pp. 1-4 ◽  
Author(s):  
D. Peterson ◽  
E. W. Brenu ◽  
G. Gottschalk ◽  
S. Ramos ◽  
T. Nguyen ◽  
...  

Objectives. Previous research has provided evidence for dysregulation in peripheral cytokines in patients with Chronic Fatigue Syndrome/Myalgic Encephalomyelitis (CFS/ME). To date only one study has examined cytokines in cerebrospinal fluid (CSF) samples of CFS/ME patients. The purpose of this pilot study was to examine the role of cytokines in CSF of CFS/ME patients.Methods. CSF was collected from 18 CFS/ME patients and 5 healthy controls. The CSF samples were examined for the expression of 27 cytokines (interleukin- (IL-) 1β, IL-1ra, IL-2, IL-4, IL-6, IL-7, IL-8, IL-9, IL-10, IL-12p70, IL-13, IL-15, IL-17, basic FGF, eotaxin, G-CSF, GM-CSF, IFN-γ, IP-10, MCP-1 (MCAF), MIP-1α, MIP-1β, PDGF-BB, RANTES, TNF-α, and VEGF) using the Bio-Plex Human Cytokine 27-plex Assay.Results. Of the 27 cytokines examined, only IL-10 was significantly reduced in the CFS/ME patients in comparison to the controls.Conclusions. This preliminary investigation suggests that perturbations in inflammatory cytokines in the CSF of CFS/ME patients may contribute to the neurological discrepancies observed in CFS/ME.


2014 ◽  
Vol 1 ◽  
pp. 25-38
Author(s):  
S. L. Hardcastle ◽  
E. W. Brenu ◽  
D.R. Staines ◽  
S. Marshall-Gradisnik

Biomolecules ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1359
Author(s):  
Lena Lutz ◽  
Johanna Rohrhofer ◽  
Sonja Zehetmayer ◽  
Michael Stingl ◽  
Eva Untersmayr

Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a severe multi-systemic disease characterized by debilitating fatigue that is not relieved by rest. The causes of the disease are still largely unexplained, and no causative treatment is currently available. Changes in the immune response are considered as fundamental in the development of ME/CFS. Thus, we aimed to evaluate the immunological profile of ME/CFS patients in a retrospective data analysis. As part of the routine workup for ME/CFS patients, a differential blood count, leukocyte subtyping, and quantification of immunoglobulins and IgG subclasses, as well as a complement analysis, was performed. Out of 262 ME/CFS patients, 64.9% had a reduction or deficiency in at least one of the listed immune parameters. In contrast, 26.3% showed signs of immune activation or inflammation. A total of 17.6% of the ME/CFS patients had an unclassified antibody deficiency, with IgG3 and IgG4 subclass deficiencies as the most common phenotypes. Reduced MBL (mannose-binding lectin) levels were found in 32% of ME/CFS patients, and MBL deficiency in 7%. In summary, the present results confirmed the relevance of immune dysfunction in ME/CFS patients underlining the involvement of a dysfunctional immune response in the disease. Thus, immune parameters are relevant disease biomarkers, which might lead to targeted therapeutic approaches in the future.


2021 ◽  
Vol 10 (16) ◽  
pp. 3675
Author(s):  
Helma Freitag ◽  
Marvin Szklarski ◽  
Sebastian Lorenz ◽  
Franziska Sotzny ◽  
Sandra Bauer ◽  
...  

Background: Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) is an acquired complex disease with patients suffering from the cardinal symptoms of fatigue, post-exertional malaise (PEM), cognitive impairment, pain and autonomous dysfunction. ME/CFS is triggered by an infection in the majority of patients. Initial evidence for a potential role of natural regulatory autoantibodies (AAB) to beta-adrenergic (AdR) and muscarinic acetylcholine receptors (M-AChR) in ME/CFS patients comes from a few studies. Methods: Here, we analyzed the correlations of symptom severity with levels of AAB to vasoregulative AdR, AChR and Endothelin-1 type A and B (ETA/B) and Angiotensin II type 1 (AT1) receptor in a Berlin cohort of ME/CFS patients (n = 116) by ELISA. The severity of disease, symptoms and autonomic dysfunction were assessed by questionnaires. Results: We found levels of most AABs significantly correlated with key symptoms of fatigue and muscle pain in patients with infection-triggered onset. The severity of cognitive impairment correlated with AT1-R- and ETA-R-AAB and severity of gastrointestinal symptoms with alpha1/2-AdR-AAB. In contrast, the patients with non-infection-triggered ME/CFS showed fewer and other correlations. Conclusion: Correlations of specific AAB against G-protein-coupled receptors (GPCR) with symptoms provide evidence for a role of these AAB or respective receptor pathways in disease pathomechanism.


2017 ◽  
Author(s):  
Santiago Herrera ◽  
Wilfred C. de Vega ◽  
David Ashbrook ◽  
Suzanne D. Vernon ◽  
Patrick O. McGowan

ABSTRACTMyalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) is an example of a complex disease of unknown etiology. Multiple studies point to disruptions in immune functioning in ME/CFS patients as well as with specific genetic polymorphisms and alterations of the DNA methylome in lymphocytes. However, the association between DNA methylation and genetic background in relation to the ME/CFS is currently unknown. In this study we explored this association by characterizing the genomic (~4.3 million SNPs) and epigenomic (~480 thousand CpG loci) variability between populations of ME/CFS patients and healthy controls. We found significant associations of methylation states in T-lymphocytes at several CpG loci and regions with ME/CFS phenotype. These methylation anomalies are in close proximity to genes involved with immune function and cellular metabolism. Finally, we found significant correlations of genotypes with methylation phenotypes associated with ME/CFS. The findings from this study highlight the role of epigenetic and genetic interactions in complex diseases, and suggest several genetic and epigenetic elements potentially involved in the mechanisms of disease in ME/CFS.


Sign in / Sign up

Export Citation Format

Share Document