scholarly journals Improved Accuracy and Safety of Pedicle Screw Placement by Using a Probe with an Electrical Conductivity-Measuring Device during Severe Syndromic and Neuromuscular Scoliosis Spine Surgery

2022 ◽  
Vol 11 (2) ◽  
pp. 419
Author(s):  
Takashi Yurube ◽  
Yutaro Kanda ◽  
Masaaki Ito ◽  
Yoshiki Takeoka ◽  
Teppei Suzuki ◽  
...  

An electrical conductivity-measuring device (ECD) has recently been developed to support pedicle screw placement. However, no evidence exists regarding its efficacy for syndromic/neuromuscular scoliosis with extremely difficult screwing. We retrospectively reviewed 2010–2016 medical records of 21 consecutive syndromic/neuromuscular scoliosis patients undergoing free-hand segmental fixation surgery at our institution and compared the pedicle screw insertion accuracy and safety between 10 with a conventional non-ECD probe (2010–2013) and 11 with an ECD probe (2014–2016). We analyzed preoperative pedicle shape and postoperative screw placement in computed tomography. There were no significant differences between ECD and non-ECD groups in demographic, clinical, and treatment characteristics including scoliosis severity and pedicle diameter. The abandonment rate due to liquorrhea or perforation was lower in ECD (12.3%) than in non-ECD (26.7%) (p < 0.01). Acceptable insertion without perforation or <2-mm lateral/cranial position was more frequent in ECD (67.1%) than in non-ECD (56.9%) (p = 0.02). Critical ≥5-mm medial/caudal malposition was not seen in ECD (0.0%) but in non-ECD (2.4%) (p = 0.02). The perforation distance was shorter in ECD (2.2 ± 1.1 mm) than in non-ECD (2.6 ± 1.7 mm) (p = 0.01). Results involve small sample size, selection, performance, and learning curve biases; nevertheless, ECD could be useful for more accurate and safer pedicle screw placement in severe syndromic/neuromuscular scoliosis.

2010 ◽  
Vol 13 (4) ◽  
pp. 509-515 ◽  
Author(s):  
Cary Idler ◽  
Kevin W. Rolfe ◽  
Josef E. Gorek

Object This study was conducted to assess the in vivo safety and accuracy of percutaneous lumbar pedicle screw placement using the owl's-eye view of the pedicle axis and a new guidance technology system that facilitates orientation of the C-arm into the appropriate fluoroscopic view and the pedicle cannulation tool in the corresponding trajectory. Methods A total of 326 percutaneous pedicle screws were placed from L-3 to S-1 in 85 consecutive adult patients. Placement was performed using simple coaxial imaging of the pedicle with the owl's-eye fluoroscopic view. NeuroVision, a new guidance system using accelerometer technology, helped align the C-arm trajectory into the owl's-eye view and the cannulation tool in the same trajectory. Postoperative fine-cut CT scans were acquired to assess screw position. Medical records were reviewed for complications. Results Five of 326 screws breached a pedicle cortex—all breaches were less than 2 mm—for an accuracy rate of 98.47%. Five screws violated an adjacent facet joint. All were at the S-1 superior facet and included in a fusion. No screw violated an adjacent mobile facet or disc space. There were no cases of new or worsening neurological symptoms or deficits for an overall clinical accuracy of 100%. Conclusions The owl's-eye technique of coaxial pedicle imaging with the C-arm fluoroscopy, facilitated by NeuroVision, is a safe and accurate means by which to place percutaneous pedicle screws for degenerative conditions of the lumbar spine. This is the largest series reported to use the oblique or owl's-eye projection for percutaneous pedicle screw insertion. The accuracy of percutaneous screw insertion with this technique meets or exceeds that of other reported clinical series or techniques.


2017 ◽  
Vol 43 (2) ◽  
pp. E9 ◽  
Author(s):  
Brandon W. Smith ◽  
Jacob R. Joseph ◽  
Michael Kirsch ◽  
Mary Oakley Strasser ◽  
Jacob Smith ◽  
...  

OBJECTIVEPercutaneous pedicle screw insertion (PPSI) is a mainstay of minimally invasive spinal surgery. Traditionally, PPSI is a fluoroscopy-guided, multistep process involving traversing the pedicle with a Jamshidi needle, placement of a Kirschner wire (K-wire), placement of a soft-tissue dilator, pedicle tract tapping, and screw insertion over the K-wire. This study evaluates the accuracy and safety of PPSI with a simplified 2-step process using a navigated awl-tap followed by navigated screw insertion without use of a K-wire or fluoroscopy.METHODSPatients undergoing PPSI utilizing the K-wire–less technique were identified. Data were extracted from the electronic medical record. Complications associated with screw placement were recorded. Postoperative radiographs as well as CT were evaluated for accuracy of pedicle screw placement.RESULTSThirty-six patients (18 male and 18 female) were included. The patients’ mean age was 60.4 years (range 23.8–78.4 years), and their mean body mass index was 28.5 kg/m2 (range 20.8–40.1 kg/m2). A total of 238 pedicle screws were placed. A mean of 6.6 pedicle screws (range 4–14) were placed over a mean of 2.61 levels (range 1–7). No pedicle breaches were identified on review of postoperative radiographs. In a subgroup analysis of the 25 cases (69%) in which CT scans were performed, 173 screws were assessed; 170 (98.3%) were found to be completely within the pedicle, and 3 (1.7%) demonstrated medial breaches of less than 2 mm (Grade B). There were no complications related to PPSI in this cohort.CONCLUSIONSThis streamlined 2-step K-wire–less, navigated PPSI appears safe and accurate and avoids the need for radiation exposure to surgeon and staff.


2017 ◽  
Vol 42 (5) ◽  
pp. E14 ◽  
Author(s):  
Granit Molliqaj ◽  
Bawarjan Schatlo ◽  
Awad Alaid ◽  
Volodymyr Solomiichuk ◽  
Veit Rohde ◽  
...  

OBJECTIVEThe quest to improve the safety and accuracy and decrease the invasiveness of pedicle screw placement in spine surgery has led to a markedly increased interest in robotic technology. The SpineAssist from Mazor is one of the most widely distributed robotic systems. The aim of this study was to compare the accuracy of robot-guided and conventional freehand fluoroscopy-guided pedicle screw placement in thoracolumbar surgery.METHODSThis study is a retrospective series of 169 patients (83 women [49%]) who underwent placement of pedicle screw instrumentation from 2007 to 2015 in 2 reference centers. Pathological entities included degenerative disorders, tumors, and traumatic cases. In the robot-assisted cohort (98 patients, 439 screws), pedicle screws were inserted with robotic assistance. In the freehand fluoroscopy-guided cohort (71 patients, 441 screws), screws were inserted using anatomical landmarks and lateral fluoroscopic guidance. Patients treated before 2009 were included in the fluoroscopy cohort, whereas those treated since mid-2009 (when the robot was acquired) were included in the robot cohort. Since then, the decision to operate using robotic assistance or conventional freehand technique has been based on surgeon preference and logistics. The accuracy of screw placement was assessed based on the Gertzbein-Robbins scale by a neuroradiologist blinded to treatment group. The radiological slice with the largest visible deviation from the pedicle was chosen for grading. A pedicle breach of 2 mm or less was deemed acceptable (Grades A and B) while deviations greater than 2 mm (Grades C, D, and E) were classified as misplacements.RESULTSIn the robot-assisted cohort, a perfect trajectory (Grade A) was observed for 366 screws (83.4%). The remaining screws were Grades B (n = 44 [10%]), C (n = 15 [3.4%]), D (n = 8 [1.8%]), and E (n = 6 [1.4%]). In the fluoroscopy-guided group, a completely intrapedicular course graded as A was found in 76% (n = 335). The remaining screws were Grades B (n = 57 [12.9%]), C (n = 29 [6.6%]), D (n = 12 [2.7%]), and E (n = 8 [1.8%]). The proportion of non-misplaced screws (corresponding to Gertzbein-Robbins Grades A and B) was higher in the robot-assisted group (93.4%) than the freehand fluoroscopy group (88.9%) (p = 0.005).CONCLUSIONSThe authors’ retrospective case review found that robot-guided pedicle screw placement is a safe, useful, and potentially more accurate alternative to the conventional freehand technique for the placement of thoracolumbar spinal instrumentation.


2019 ◽  
Author(s):  
Li Yongqi ◽  
Zhang Dehua ◽  
Wu Hongzi ◽  
Zhang Ke ◽  
Yang Rui ◽  
...  

Abstract Background This study evaluated the minimal invasiveness, safety, and accuracy of robot-assisted pedicle screw placement procedure using a modified tracer fixation device. Methods Patients were randomly assigned to conventional fixation group (25 patients) and modified fixation group (27 patients). Results No baseline statistical difference was observed between the groups ( P >0.05). The length of unnecessary incision, amount of bleeding, and fixation duration for tracer fixation respectively were 6.08±1.02 mm, 1.46±0.84 ml, and 1.56±0.32 min in the modified fixation group and 40.28±8.52 mm, 12.02±2.24 ml, and 5.08±1.06 min in the conventional group. The difference between both groups was significant ( P <0.05). However, no significant difference between the two groups was observed in terms of the accuracy of pedicle screw placement ( P >0.05). Conclusions The modified minimally invasive procedure for tracer fixation results in minimal trauma and is simple, reliable, and highly safe. Additionally, the procedure does not compromise the accuracy of pedicle screw placement. Thus, it has great clinical applicable value.


2017 ◽  
Vol 25 (1) ◽  
pp. 230949901668409 ◽  
Author(s):  
Hao Liu ◽  
Yimeng Wang ◽  
Bin Pi ◽  
Zhonglai Qian ◽  
Xiaoyu Zhu ◽  
...  

Purpose: To introduce the intraoperative O-arm-assisted pedicle screw insertion without any navigation system in the treatment of thoracic vertebrae fracture and compare it to conventional fluoroscopy (C-arm)-assisted pedicle screw insertion technique. Methods: About 156 pedicle screws were inserted in 23 patients (C-arm group), and 208 pedicle screws were inserted in 30 patients (O-arm group). The postoperative computed tomography images were analyzed for pedicle violation based on Gertzbein classification. The total surgery time, the average time required for inserting a screw, the mean action times of adjusting guide probe and pedicle screw, and the hospitalization time were compared in both groups, respectively. The American Spinal Injury Association (ASIA) was used for evaluating the health outcomes pre- and postoperatively. Results: There are the higher accuracy rate of satisfactory pedicle screw placement (grades 0 and 1) and the less incidence of medial perforation in the O-arm group compared to the C-arm group ( p < 0.05). The average time required for inserting a screw, the action times of adjusting the guide probe and pedicle screw, and the hospitalization time in the O-arm group are less than the respective ones in the C-arm group ( p < 0.05). There was no significant difference for the total surgery time between both groups. No further damage of the nerve function postoperatively is found according to the ASIA grade. Conclusion: The O-arm-assisted pedicle screw insertion without navigation we described provides higher accuracy of pedicle screw placement and better clinical efficacy compared to conventional fluoroscopy (C-arm) technique.


2019 ◽  
Author(s):  
Bin Liu ◽  
Xiangyang Liu ◽  
Xiongjie Shen ◽  
Guoping Wang ◽  
Yixin Chen

Abstract Background : Cervical Pedicle Screw(CPS) placement is a challenging work due to high risk of neurovascular complications. Although there have been a number of different free-hand or navigation assisted techniques for CPS placement, perforations always occur during screw insertion, especially lateral perforation. The objective of this research is to describe a novel free-hand technique for subaxial CPS placement (C3–C7) for improving security and decreasing the chances of perforation. Methods : Thirty-two patients undergoing surgery with CPS instrumentation (C3–C7) at our institute between June 2017 and December 2018 were included in the study. All the patients had cervical trauma, and pedicle screw insertion was made according to the free-hand “slide technique”. Lamina, lateral mass and facet joint of the target area were clearly exposed and the optimal entry point was found on the lateral mass posterior surface. A pedicular probe was then inserted and gently advanced. During the pedicle probe insertion, the cortex of the medial margin of the pedicle acted as a “slide” to permit safe insertion of the screw. If the pedicle screw pathway was intact, screw of appropriate size was carefully placed. Three-dimensional (3D) CT imaging reconstruction was performed in all the patients after surgery, and screw perforations were graded with the Gertzbein-Robbins classification. Results : A total of 257 CPSs (C3-7) were inserted, of which 41 CPSs in C3, 61 CPSs in C4, 55 CPSs in C5, 53 CPSs in C6, and 47 CPSs in C7. The diameter and length of CPSs were 3.5 mm and 22-26 mm respectively. According to the Gertzbein-Robbins classification, grade 0, 231 screws; grade 1, 19 screws; and grade 2, 7 screws. No neurovascular complications occurred stemming from malpositioning of pedicle screws. In perforated screws (26 screws), lateral perforations were 16, medical perforations were 5, and inferior perforations were 4. Conclusions : The initial usage result show the “slide technique” is a safe, effective and cost-effective technique for pedicle screw placement in the cervical spine. This is the first report of such technique, we recommend it to wide practical application though further studies are needed.


2020 ◽  
Author(s):  
Li Yongqi ◽  
Zhang Dehua ◽  
Wu Hongzi ◽  
Zhang Ke ◽  
Yang Rui ◽  
...  

Abstract Background This study evaluated the minimal invasiveness, safety, and accuracy of robot-assisted pedicle screw placement procedure using a modified tracer fixation device. Methods Patients were randomly assigned to conventional fixation group (25 patients) and modified fixation group (27 patients). Results No baseline statistical difference was observed between the groups ( P >0.05). The length of unnecessary incision, amount of bleeding, and fixation duration for tracer fixation respectively were 6.08±1.02 mm, 1.46±0.84 ml, and 1.56±0.32 min in the modified fixation group and 40.28±8.52 mm, 12.02±2.24 ml, and 5.08±1.06 min in the conventional group. The difference between both groups was significant ( P <0.05). However, no significant difference between the two groups was observed in terms of the accuracy of pedicle screw placement ( P >0.05). Conclusions The modified minimally invasive procedure for tracer fixation results in minimal trauma and is simple, reliable, and highly safe. Additionally, the procedure does not compromise the accuracy of pedicle screw placement. Thus, it has great clinical applicable value.


Author(s):  
Alsiagy A. Salama ◽  
Mohamed A. Amin ◽  
Ahmed Y. Soliman ◽  
Ahmed El-Tantaway

Abstract Background Pedicle screw instrumentation is used widely in lumbar spine for stabilization to enhance arthrodesis and has been accepted in the thoracic spine in recent years. The purpose of this study was to assess the value of postoperative 320 multi-slice computed tomography (MSCT) in assessment of pedicle screw placement in patients with spinal fixation with clinical and surgical correlation. Results A total of 340 pedicular screws were inserted to 70 cases. 286 (84.12%) were in, 54 screws (15.88%) were violated, and revision surgeries were required for 5 displaced screws. On axial, coronal reconstruction and three-dimensional (3D) reformatted CT images 36, 47, and 54 displaced screws were detected, respectively. Both sensitivity and specificity for 3D reformatted images were 100%. For axial image, they were 97.6% and 89.4%, respectively, compared with surgical findings in 5 revised screws. Conclusion Multi-slice CT scan is a valuable and valid postoperative assessment tool of accuracy of spinal pedicle screw placement.


Sign in / Sign up

Export Citation Format

Share Document