scholarly journals Sub-Inhibitory Clindamycin and Azithromycin reduce S. aureus Exoprotein Induced Toxicity, Inflammation, Barrier Disruption and Invasion

2019 ◽  
Vol 8 (10) ◽  
pp. 1617 ◽  
Author(s):  
Hu ◽  
Ramezanpour ◽  
Hayes ◽  
Liu ◽  
Psaltis ◽  
...  

Background: Chronic rhinosinusitis (CRS) is defined as a chronic inflammation of the nose and paranasal sinus mucosa associated with relapsing infections—particularly with S. aureus. Long-term treatments with protein synthesis inhibitor antibiotics have been proposed to reduce inflammation in the context chronic severe inflammatory airway pathologies, including CRS. This study assessed the effect of subinhibitory clindamycin and azithromycin on S. aureus exoprotein induced inflammation, toxicity and invasiveness. Methods: S. aureus ATCC51650 and two clinical isolates grown in planktonic and biofilm form were treated with subinhibitory clindamycin and azithromycin. Exoproteins were collected and applied to primary human nasal epithelial cells (HNECs) in monolayers and at air-liquid interface. This was followed by lactate dehydrogenase (LDH), enzyme-linked immunosorbent assay (ELISA), Transepithelial Electrical Resistance (TEER) and paracellular permeability assays to assess the effect on cell toxicity, inflammatory cytokine production and mucosal barrier structure and function, respectively. The effect of these treatments was tested as well on the S. aureus invasiveness of HNECs. Results: Subinhibitory clindamycin reduced S. aureus exoprotein production in planktonic and biofilm form, thereby blocking exoprotein-induced toxicity, reversing its detrimental effects on mucosal barrier structure and function and modulating its inflammatory properties. Sub-inhibitory azithromycin had similar effects—albeit to a lesser extent. Furthermore, clindamycin—but not azithromycin—treated S. aureus lost its invasive capacity of HNECs. Conclusion: Subinhibitory clindamycin and azithromycin reduce S. aureus exoprotein production, thereby modulating the inflammatory cascade by reducing exoprotein-induced toxicity, inflammation, mucosal barrier disruption and invasiveness.

Zygote ◽  
2007 ◽  
Vol 15 (2) ◽  
pp. 129-138 ◽  
Author(s):  
F. Sun ◽  
F. Tang ◽  
A Y. Yan ◽  
H. Y. Fang ◽  
H. Z. Sheng

SummarySRG3 (Smarcc1) is a core subunit of the SWI/SNF complex. In the absence of SRG3, embryonic development ceases during peri-implantation stages, indicating that SRG3, as well as the chromatin-remodelling process, plays an essential role in early mouse development. To gain a better understanding of chromatin remodelling during the early stages of development, we examined SRG3 expression during oogenesis and preimplantation stages using immunofluorescence and western blot assays. SRG3 was detected in nuclei of oocytes during growth and maturation. Following fertilization, SRG3 was detected in pronuclei shortly after their formation. Nuclear concentrations of SRG3 increased in a time-dependent fashion and were found to be greater in the male pronucleus than in the female pronucleus. The increase in nuclear SRG3 was partially inhibited by a protein synthesis inhibitor, but not by a transcriptional inhibitor. Expression of SRG3 is accompanied by expression of Brg1 and Ini1, two other core subunits of the SWI/SNF complex. The expression of these three remodelling factors parallels that of SP1 and TBP, both spatially and temporally, in the mouse embryo, suggesting a role for remodelling factors in chromatin structure and function during early development.


Antibodies ◽  
2020 ◽  
Vol 9 (3) ◽  
pp. 48
Author(s):  
Jessica Ramadhin ◽  
Vanessa Silva-Moraes ◽  
Thomas Norberg ◽  
Donald Harn

Monoclonal antibodies (mAbs) that recognize glycans are useful tools to assess carbohydrates’ structure and function. We sought to produce IgG mAbs to the human milk oligosaccharide (HMO), lacto-N-fucopentaose III (LNFPIII). LNFPIII contains the Lewisx antigen, which is found on the surface of schistosome parasites. mAbs binding the Lewisx antigen are well-reported in the literature, but mAbs recognizing HMO structures are rare. To generate mAbs, mice were immunized with LNFPIII-DEX (P3DEX) plus CpGs in VacSIM®, a novel vaccine/drug delivery platform. Mice were boosted with LNFPIII-HSA (P3HSA) plus CpGs in Incomplete Freund’s Adjuvant (IFA). Splenocytes from immunized mice were used to generate hybridomas and were screened against LNFPIII conjugates via enzyme-linked immunosorbent assay (ELISA). Three positive hybridomas were expanded, and one hybridoma, producing IgG and IgM antibodies, was cloned via flow cytometry. Clone F1P2H4D8D5 was selected because it produced IgG1 mAbs, but rescreening unexpectedly showed binding to both LNFPIII and lacto-N-neotetraose (LNnT) conjugates. To further assess the specificity of the mAb, we screened it on two glycan microarrays and found no significant binding. This finding suggests that the mAb binds to the acetylphenylenediamine (APD) linker-spacer structure of the conjugate. We present the results herein, suggesting that our new mAb could be a useful probe for conjugates using similar linker spacer structures.


2011 ◽  
Vol 21 (6) ◽  
pp. 906-915 ◽  
Author(s):  
Hélène Duplan ◽  
Emmanuel Questel ◽  
Hélène Hernandez-Pigeon ◽  
Marie Florence Galliano ◽  
Antony Caruana ◽  
...  

2016 ◽  
Vol 29 (3) ◽  
pp. 135-147 ◽  
Author(s):  
Simon G. Danby ◽  
Kirsty Brown ◽  
Tim Higgs-Bayliss ◽  
John Chittock ◽  
Lujain Albenali ◽  
...  

Blood ◽  
1994 ◽  
Vol 83 (4) ◽  
pp. 1086-1092 ◽  
Author(s):  
N Abughali ◽  
M Berger ◽  
MF Tosi

Abstract Neonatal neutrophils (PMN) show a well-documented defect in chemotaxis that is associated with several abnormalities of PMN structure and function, including deficient surface expression of CR3 (CD11b), a critical adhesion molecule, on chemoattractant-activated PMN. After activation of PMN with additional stimuli including calcium ionophores, we also found deficient surface CR3 (but normal CR1) expression on neonatal PMN suggesting that abnormal signaling mechanisms are not likely to explain the deficient CR3 expression on activated neonatal PMN. Therefore, we hypothesized that deficient surface expression of CR3 on stimulated neonatal neutrophils is caused by a deficiency in total cell content of CR3. We tested this hypothesis using three different methods to compare the total quantity of CR3 in neonatal versus adult PMN. Western blotting of serial twofold dilutions of PMN lysates from five adult and neonatal pairs, using a monoclonal antibody (MoAb) against CR3 (21PM19C), consistently showed diminished CR3 content in neonatal PMN. A sandwich enzyme-linked immunosorbent assay, in which the CR3 heterodimers in PMN lysates were captured by MoAb to the beta-chain, CD18 (R15.7), then detected with a biotinylated MoAb to the alpha-chain, CD11b (anti-Mac-1), showed that neonatal PMN lysates contain about 66% of adult PMN levels of CR3 (P < 0.03; n = 6). PMN fixed with paraformaldehyde and permeabilized with saponin were studied by immunofluorescence flow cytometry to determine total (surface plus intracellular) CR3 content using phycoerythrin-conjugated MoAb to CR3 (anti-Leu15). Mean total cell CR3 content (in relative fluorescence units) was 58 +/- 14 for adult PMN and 27 +/- 6 for neonatal PMN (n=5; P=0.013). In each method, total cell content of CR1 was equivalent for neonatal versus adult PMN. We conclude that neonatal PMN are markedly deficient in total cell CR3 content compared with adult PMN. This result provides a primary explanation for deficient CR3 surface expression on activated neonatal PMN that, in turn, may be important in the chemotactic defect of these cells.


1990 ◽  
Vol 39 (2) ◽  
pp. 140-155 ◽  
Author(s):  
Rochelle Mineau-Hanschke ◽  
Marc E. Wiles ◽  
Nicole Morel ◽  
Herbert B. Hechtman ◽  
David Shepro

Sign in / Sign up

Export Citation Format

Share Document