scholarly journals Launching Adversarial Attacks against Network Intrusion Detection Systems for IoT

2021 ◽  
Vol 1 (2) ◽  
pp. 252-273
Author(s):  
Pavlos Papadopoulos ◽  
Oliver Thornewill von Essen ◽  
Nikolaos Pitropakis ◽  
Christos Chrysoulas ◽  
Alexios Mylonas ◽  
...  

As the internet continues to be populated with new devices and emerging technologies, the attack surface grows exponentially. Technology is shifting towards a profit-driven Internet of Things market where security is an afterthought. Traditional defending approaches are no longer sufficient to detect both known and unknown attacks to high accuracy. Machine learning intrusion detection systems have proven their success in identifying unknown attacks with high precision. Nevertheless, machine learning models are also vulnerable to attacks. Adversarial examples can be used to evaluate the robustness of a designed model before it is deployed. Further, using adversarial examples is critical to creating a robust model designed for an adversarial environment. Our work evaluates both traditional machine learning and deep learning models’ robustness using the Bot-IoT dataset. Our methodology included two main approaches. First, label poisoning, used to cause incorrect classification by the model. Second, the fast gradient sign method, used to evade detection measures. The experiments demonstrated that an attacker could manipulate or circumvent detection with significant probability.

Information ◽  
2020 ◽  
Vol 11 (6) ◽  
pp. 315
Author(s):  
Nathan Martindale ◽  
Muhammad Ismail ◽  
Douglas A. Talbert

As new cyberattacks are launched against systems and networks on a daily basis, the ability for network intrusion detection systems to operate efficiently in the big data era has become critically important, particularly as more low-power Internet-of-Things (IoT) devices enter the market. This has motivated research in applying machine learning algorithms that can operate on streams of data, trained online or “live” on only a small amount of data kept in memory at a time, as opposed to the more classical approaches that are trained solely offline on all of the data at once. In this context, one important concept from machine learning for improving detection performance is the idea of “ensembles”, where a collection of machine learning algorithms are combined to compensate for their individual limitations and produce an overall superior algorithm. Unfortunately, existing research lacks proper performance comparison between homogeneous and heterogeneous online ensembles. Hence, this paper investigates several homogeneous and heterogeneous ensembles, proposes three novel online heterogeneous ensembles for intrusion detection, and compares their performance accuracy, run-time complexity, and response to concept drifts. Out of the proposed novel online ensembles, the heterogeneous ensemble consisting of an adaptive random forest of Hoeffding Trees combined with a Hoeffding Adaptive Tree performed the best, by dealing with concept drift in the most effective way. While this scheme is less accurate than a larger size adaptive random forest, it offered a marginally better run-time, which is beneficial for online training.


Electronics ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 2006
Author(s):  
Malek Al-Zewairi ◽  
Sufyan Almajali ◽  
Moussa Ayyash

Advancements in machine learning and artificial intelligence have been widely utilised in the security domain, including but not limited to intrusion detection techniques. With the large training datasets of modern traffic, intelligent algorithms and powerful machine learning tools, security researchers have been able to greatly improve on the intrusion detection models and enhance their ability to detect malicious traffic more accurately. Nonetheless, the problem of detecting completely unknown security attacks is still an open area of research. The enormous number of newly developed attacks constitutes an eccentric challenge for all types of intrusion detection systems. Additionally, the lack of a standard definition of what constitutes an unknown security attack in the literature and the industry alike adds to the problem. In this paper, the researchers reviewed the studies on detecting unknown attacks over the past 10 years and found that they tended to use inconsistent definitions. This formulates the need for a standard consistent definition to have comparable results. The researchers proposed a new categorisation of two types of unknown attacks, namely Type-A, which represents a completely new category of unknown attacks, and Type-B, which represents unknown attacks within already known categories of attacks. The researchers conducted several experiments and evaluated modern intrusion detection systems based on shallow and deep artificial neural network models and their ability to detect Type-A and Type-B attacks using two well-known benchmark datasets for network intrusion detection. The research problem was studied as both a binary and multi-class classification problem. The results showed that the evaluated models had poor overall generalisation error measures, where the classification error rate in detecting several types of unknown attacks from 92 experiments was 50.09%, which highlights the need for new approaches and techniques to address this problem.


2019 ◽  
Author(s):  
Abhishek Verma ◽  
Virender Ranga

In the era of digital revolution, a huge amount of data is being generated from different networks on a daily basis. Security of this data is of utmost importance. Intrusion Detection Systems are found to be one the best solutions towards detecting intrusions. Network Intrusion Detection Systems are employed as a defence system to secure networks. Various techniques for the effective development of these defence systems have been proposed in the literature. However, the research on the development of datasets used for training and testing purpose of such defence systems is equally concerned. Better datasets improve the online and offline intrusion detection capability of detection model. Benchmark datasets like KDD 99 and NSL-KDD cup 99 obsolete and do not contain network traces of modern attacks like Denial of Service, hence are unsuitable for the evaluation purpose. In this work, a detailed analysis of CIDDS-001 dataset has been done and presented. We have used different well-known machine learning techniques for analysing the complexity of the dataset. Eminent evaluation metrics including Detection Rate, Accuracy, False Positive Rate, Kappa statistics, Root mean squared error have been used to show the performance of employed machine learning techniques.


2019 ◽  
Author(s):  
Abhishek Verma ◽  
Virender Ranga

In the era of digital revolution, a huge amount of data is being generated from different networks on a daily basis. Security of this data is of utmost importance. Intrusion Detection Systems are found to be one the best solutions towards detecting intrusions. Network Intrusion Detection Systems are employed as a defence system to secure networks. Various techniques for the effective development of these defence systems have been proposed in the literature. However, the research on the development of datasets used for training and testing purpose of such defence systems is equally concerned. Better datasets improve the online and offline intrusion detection capability of detection model. Benchmark datasets like KDD 99 and NSL-KDD cup 99 obsolete and do not contain network traces of modern attacks like Denial of Service, hence are unsuitable for the evaluation purpose. In this work, a detailed analysis of CIDDS-001 dataset has been done and presented. We have used different well-known machine learning techniques for analysing the complexity of the dataset. Eminent evaluation metrics including Detection Rate, Accuracy, False Positive Rate, Kappa statistics, Root mean squared error have been used to show the performance of employed machine learning techniques.


2020 ◽  
Vol 10 (5) ◽  
pp. 1775 ◽  
Author(s):  
Roberto Magán-Carrión ◽  
Daniel Urda ◽  
Ignacio Díaz-Cano ◽  
Bernabé Dorronsoro

Presently, we are living in a hyper-connected world where millions of heterogeneous devices are continuously sharing information in different application contexts for wellness, improving communications, digital businesses, etc. However, the bigger the number of devices and connections are, the higher the risk of security threats in this scenario. To counteract against malicious behaviours and preserve essential security services, Network Intrusion Detection Systems (NIDSs) are the most widely used defence line in communications networks. Nevertheless, there is no standard methodology to evaluate and fairly compare NIDSs. Most of the proposals elude mentioning crucial steps regarding NIDSs validation that make their comparison hard or even impossible. This work firstly includes a comprehensive study of recent NIDSs based on machine learning approaches, concluding that almost all of them do not accomplish with what authors of this paper consider mandatory steps for a reliable comparison and evaluation of NIDSs. Secondly, a structured methodology is proposed and assessed on the UGR’16 dataset to test its suitability for addressing network attack detection problems. The guideline and steps recommended will definitively help the research community to fairly assess NIDSs, although the definitive framework is not a trivial task and, therefore, some extra effort should still be made to improve its understandability and usability further.


Sign in / Sign up

Export Citation Format

Share Document