scholarly journals Structural Health Monitoring for Advanced Composite Structures: A Review

2020 ◽  
Vol 4 (1) ◽  
pp. 13 ◽  
Author(s):  
Alfredo Güemes ◽  
Antonio Fernandez-Lopez ◽  
Angel Renato Pozo ◽  
Julián Sierra-Pérez

Condition-based maintenance refers to the installation of permanent sensors on a structure/system. By means of early fault detection, severe damage can be avoided, allowing efficient timing of maintenance works and avoiding unnecessary inspections at the same time. These are the goals for structural health monitoring (SHM). The changes caused by incipient damage on raw data collected by sensors are quite small, and are usually contaminated by noise and varying environmental factors, so the algorithms used to extract information from sensor data need to focus on sensitive damage features. The developments of SHM techniques over the last 20 years have been more related to algorithm improvements than to sensor progress, which essentially have been maintained without major conceptual changes (with regards to accelerometers, piezoelectric wafers, and fiber optic sensors). The main different SHM systems (vibration methods, strain-based fiber optics methods, guided waves, acoustic emission, and nanoparticle-doped resins) are reviewed, and the main issues to be solved are identified. Reliability is the key question, and can only be demonstrated through a probability of detection (POD) analysis. Attention has only been paid to this issue over the last ten years, but now it is a growing trend. Simulation of the SHM system is needed in order to reduce the number of experiments.

2012 ◽  
Vol 249-250 ◽  
pp. 849-855 ◽  
Author(s):  
Andrea Alaimo ◽  
Alberto Milazzo ◽  
Calogero Orlando

Structural Health Monitoring (SHM) for composite materials is becoming a primary task due to their extended use in safety critical applications. Different methods, based on the use of piezoelectric transducers as well as of fiber optics, has been successfully proposed to detect and monitor damage in composite structural components with particular attention focused on delamination cracks.In the present paper a Structural Health Monitoring model, based on the use of piezoelectric sensors, already proposed by the authors for isotropic damaged components, is extended to delaminated composite structures. The dynamic behavior of the host damaged structure and the bonded piezoelectric sensors is modeled by means of a boundary element approach based on the Dual Reciprocity BEM. The sensitivity of the piezoelectric sensors has been studied by varying the delamination length characterizing the skin/stiffener debonding phenomenon of composite structures undergoing dynamic loads.


Author(s):  
Victor Giurgiutiu

Piezoelectric wafer active sensors (PWAS) are lightweight and inexpensive transducers that enable a large class of structural health monitoring (SHM) applications such as: (a) embedded guided wave ultrasonics, i.e., pitch-catch, pulse-echo, phased arrays; (b) high-frequency modal sensing, i.e., the electro-mechanical (E/M) impedance method; and (c) passive detection (acoustic emission and impact detection). The focus of this paper is on the challenges posed by using PWAS transducers in the composite structures as different from the metallic structures on which this methodology was initially developed. After a brief introduction, the paper reviews the PWAS-based SHM principles. It follows with a discussion of guided wave propagation in composites and PWAS tuning effects. Then, it discusses damage modes in composites. Finally, the paper presents some experimental results with damage detection in composite specimens. Hole damage and impact damage were detected using pitch-catch method with tuned guided waves being sent between a transmitter PWAS and a received PWAS. Root mean square deviation (RMSD) damage index (DI) were shown to correlate well with hole size and impact intensity. The paper ends with summary and conclusion; suggestions for further work are also presented.


Materials ◽  
2020 ◽  
Vol 13 (10) ◽  
pp. 2249
Author(s):  
Karolina Bednarska ◽  
Piotr Sobotka ◽  
Tomasz Ryszard Woliński ◽  
Oliwia Zakręcka ◽  
Wiktor Pomianek ◽  
...  

‘Smart’ structural health monitoring of composite materials with optical fiber sensors is becoming more and more important, especially in the aviation industry. This paper presents an overview of hybrid fiber-optic sensing systems based on scattering techniques, fiber Bragg gratings, interferometric techniques, and polarimetric methods in structural health monitoring. The main purpose of this manuscript is to analyze the possibilities of using hybrid sensors based on fiber optics to monitor composite structures, with a particular emphasis on aircraft structures. Since it is difficult to indicate the most comprehensive approach due to different parameters of the described sensors, the review contains a detailed description of available solutions. We hope that this work will allow for a better and faster selection of the right solution for the problem at hand.


2016 ◽  
Vol 16 (2) ◽  
pp. 225-249 ◽  
Author(s):  
Andrea Gianneo ◽  
Michele Carboni ◽  
Marco Giglio

In view of an extensive literature about guided waves–based structural health monitoring of plate-like structures made of metallic and composite materials, a lack of information is pointed out regarding an effective and universally accepted approach for characterizing capability and reliability in detecting, localizing and sizing in-service damages. On the other hand, in the frame of traditional non-destructive testing systems, capability is typically expressed by means of suitable ‘probability of detection’ curves based on Berens’ model, where a linear relationship is established between probability of detection and flaw size. Although the uncertain factors are usually different between a non-destructive inspection technique and a structural health monitoring approach, it seems that a similar mathematical framework could be assumed. From this point of view, this research investigates the feasibility of application of the very recent ‘multi-parameter’ probability of detection approach, developed within the traditional non-destructive testing field, to guided waves–based structural health monitoring. In particular, numerical simulations as well as experimental responses from flawed aluminium alloy plates were combined to bring about a ‘master’ probability of detection curve. Once established, this curve can be used to study the intrinsic capability of the system in terms of probability of detection curves, overcoming the intrinsic limitation of a single predictor (like the crack size) and a statistical model typically based upon a linear behaviour between the predictor and the response.


2021 ◽  
Author(s):  
Paul Swindell ◽  
Danielle Stephens

Abstract The Federal Aviation Administration (FAA) has been participating with the Society of Automotive Engineers (SAE) Aerospace Industry Steering Committee (AISC) to develop a methodology for calculating the Probability of Detection (POD) for Structural Health Monitoring (SHM) for damage detection on commercial aviation. Two POD methodologies were developed: one by Dr. William Meeker, Iowa State University, and the other by Dennis Roach, Sandia National Laboratories (SNL). With Dr. Seth Kessler, Metis Design Corp, a test program of 24 samples of aluminum strips to be fatigued on MTS machines was developed. The samples were designed to meet the ASTM E647. Twelve samples had two SHM modalities on the front and back from Metis (PZT and carbon nanotubes), and the other twelve had SHM sensors from Structural Monitoring Systems (SMS) (comparative vacuum monitoring – CVM) and Acellent Technologies (PZT). The tests were performed at the FAA William J Hughes Technical Center in Atlantic City, NJ. The samples were cycled every 1500 cycles and then stopped for SHM data collection. Once the crack exceeded 0.125 inches and provided for a minimum of 15 inspections, a new sample was tested until all 12 samples were completed. The data was provided to each company to be set up in the format needed to run through the POD methodologies. Then the data was provided to Dr. Meeker and Dr. Roach for analysis. This paper will provide the results of those tests.


Author(s):  
Tuncay Kamas ◽  
Banibrata Poddar ◽  
Bin Lin ◽  
Lingyu Yu ◽  
Victor Giurgiutiu

The thermal effects at elevated temperatures mostly exist for pressure vessel and pipe (PVP) applications. The technologies for diagnosis and prognosis of PVP systems need to take the thermal effect into account and compensate it on sensing and monitoring of PVP structures. One of the extensively employed sensor technologies has been permanently installed piezoelectric wafer active sensor (PWAS) for in-situ continuous structural health monitoring (SHM). Using the transduction of ultrasonic elastic waves into voltage and vice versa, PWAS has been emerged as one of the major SHM sensing technologies. However, the dynamic characteristics of PWAS need to be explored prior its installation for in-situ SHM. Electro-mechanical impedance spectroscopy (EMIS) method has been utilized as a dynamic descriptor of PWAS and as a high frequency local modal sensing technique by applying standing waves to indicate the response of the PWAS resonator by determining the resonance and anti-resonance frequencies. Another SHM technology utilizing PWAS is guided wave propagation (GWP) as a far-field transient sensing technique by transducing the traveling guided ultrasonic waves (GUW) into substrate structure. The paper first presents EMIS method that qualifies and quantifies circular PWAS resonators under traction-free boundary condition and in an ambience with increasing temperature. The piezoelectric material degradation was investigated by introducing the temperature effects on the material parameters that are obtained from experimental observations as well as from related work in literature. GWP technique is also presented by inclusion of the thermal effects on the substrate material. The MATLAB GUI under the name of Wave Form Revealer (WFR) was adapted for prediction of the thermal effects on coupled guided waves and dynamic structural change in the substrate material at elevated temperature. The WFR software allows for the analysis of multimodal guided waves in the structure with affected material parameters in an ambience with elevated temperature.


Sign in / Sign up

Export Citation Format

Share Document