scholarly journals E-Cadherin/HMR-1 Membrane Enrichment Is Polarized by WAVE-Dependent Branched Actin

2021 ◽  
Vol 9 (2) ◽  
pp. 19
Author(s):  
Luigy Cordova-Burgos ◽  
Falshruti B. Patel ◽  
Martha C. Soto

Polarized epithelial cells adhere to each other at apical junctions that connect to the apical F-actin belt. Regulated remodeling of apical junctions supports morphogenesis, while dysregulated remodeling promotes diseases such as cancer. We have documented that branched actin regulator, WAVE, and apical junction protein, Cadherin, assemble together in developing C. elegans embryonic junctions. If WAVE is missing in embryonic epithelia, too much Cadherin assembles at apical membranes, and yet apical F-actin is reduced, suggesting the excess Cadherin is not fully functional. We proposed that WAVE supports apical junctions by regulating the dynamic accumulation of Cadherin at membranes. To test this model, here we examine if WAVE is required for Cadherin membrane enrichment and apical–basal polarity in a maturing epithelium, the post-embryonic C. elegans intestine. We find that larval and adult intestines have distinct apicobasal populations of Cadherin, each with distinct dependence on WAVE branched actin. In vivo imaging shows that loss of WAVE components alters post-embryonic E-cadherin membrane enrichment, especially at apicolateral regions, and alters the lateral membrane. Analysis of a biosensor for PI(4,5)P2 suggests loss of WAVE or Cadherin alters the polarity of the epithelial membrane. EM (electron microscopy) illustrates lateral membrane changes including separations. These findings have implications for understanding how mutations in WAVE and Cadherin may alter cell polarity.

2021 ◽  
Author(s):  
Hung-Chuan Hsu ◽  
Sunil Vyas ◽  
Kuang-Yuh Huang ◽  
Hsien-Shun Liao ◽  
Yuan Luo

1998 ◽  
Vol 9 (11) ◽  
pp. 3161-3177 ◽  
Author(s):  
Peter A. Piepenhagen ◽  
W. James Nelson

Organization of proteins into structurally and functionally distinct plasma membrane domains is an essential characteristic of polarized epithelial cells. Based on studies with cultured kidney cells, we have hypothesized that a mechanism for restricting Na/K-ATPase to the basal-lateral membrane involves E-cadherin–mediated cell–cell adhesion and integration of Na/K-ATPase into the Triton X-100–insoluble ankyrin- and spectrin-based membrane cytoskeleton. In this study, we examined the relevance of these in vitro observations to the generation of epithelial cell polarity in vivo during mouse kidney development. Using differential detergent extraction, immunoblotting, and immunofluorescence histochemistry, we demonstrate the following. First, expression of the 220-kDa splice variant of ankyrin-3 correlates with the development of resistance to Triton X-100 extraction for Na/K-ATPase, E-cadherin, and catenins and precedes maximal accumulation of Na/K-ATPase. Second, expression of the 190-kDa slice variant of ankyrin-3 correlates with maximal accumulation of Na/K-ATPase. Third, Na/K-ATPase, ankyrin-3, and fodrin specifically colocalize at the basal-lateral plasma membrane of all epithelial cells in which they are expressed and during all stages of nephrogenesis. Fourth, the relative immunofluorescence staining intensities of Na/K-ATPase, ankyrin-3, and fodrin become more similar during development until they are essentially identical in adult kidney. Thus, renal epithelial cells in vivo regulate the accumulation of E-cadherin–mediated adherens junctions, the membrane cytoskeleton, and Na/K-ATPase through sequential protein expression and assembly on the basal-lateral membrane. These results are consistent with a mechanism in which generation and maintenance of polarized distributions of these proteins in vivo and in vitro involve cell–cell adhesion, assembly of the membrane cytoskeleton complex, and concomitant integration and retention of Na/K-ATPase in this complex.


RSC Advances ◽  
2015 ◽  
Vol 5 (88) ◽  
pp. 71756-71759 ◽  
Author(s):  
Tie Nan Zang ◽  
Rui Rui Zhao ◽  
Xing Zhu Yang ◽  
Yan Gao ◽  
Guang Ke Wang ◽  
...  

A near-infrared colorimetric and fluorescent chemosensor for detecting phosphate ion (Pi) has been developed. The practical utility of this chemosensor was demonstrated by employing it to detect Pi in Paramecium and C. elegans.


2020 ◽  
Author(s):  
Lindy J Pence ◽  
Antonis Kourtidis ◽  
Ryan W. Feathers ◽  
Mary T. Haddad ◽  
Sotiris Sotiriou ◽  
...  

Abstract Background: Inflammatory breast cancer is a highly aggressive form of breast cancer that robustly forms clusters of tumor emboli in dermal lymphatics and readily metastasizes. Inflammatory breast cancers express high levels of E-cadherin, the major protein of adherens junctions, which may enhance the ability of tumor cells to form such clusters and contribute to metastasis. Seemingly contradictory, E-cadherin has both tumor-suppressing and tumor-promoting roles in cancer; previous studies suggest that this depends on the balance between apical and basolateral cadherin-catenin complexes. Methods: In the present study, we use immunohistochemistry of inflammatory breast cancer patient samples and biochemical analysis of cell lines to determine the expression of PLEKHA7, an apical adherens junction protein. We use viral transduction to ectopically express PLEKHA7 in the SUM149 inflammatory breast cancer cell line. The effect of PLEKHA7 on the aggressiveness of inflammatory breast cancer in 2D, 3D and in-vivo were examined. Results: We determined that PLEKHA7 was deregulated in inflammatory breast cancer, demonstrating improper localization or lost expression in a strong majority of patient samples and very low expression in cell line models. We found that re-expressing PLEKHA7 is sufficient to suppress proliferation, anchorage independent growth, spheroid viability, and tumor growth in-vivo. We also observed a negative-selection pressure within the xenograft tumors to lose PLEKHA7 function or expression.Conclusions: The data indicate that PLEKHA7 is frequently deregulated and acts as a suppressor of inflammatory breast cancer. They also suggest that the resulting imbalance between apical and basolateral cadherin-catenin complexes contributes to growth, survival and emboli-forming capacities of inflammatory breast cancer.


2021 ◽  
Vol 22 (3) ◽  
pp. 1275
Author(s):  
Lindy J. Pence ◽  
Antonis Kourtidis ◽  
Ryan W. Feathers ◽  
Mary T. Haddad ◽  
Sotiris Sotiriou ◽  
...  

Inflammatory breast cancer is a highly aggressive form of breast cancer that forms clusters of tumor emboli in dermal lymphatics and readily metastasizes. These cancers express high levels of E-cadherin, the major mediator of adherens junctions, which enhances formation of tumor emboli. Previous studies suggest that E-cadherin promotes cancer when the balance between apical and basolateral cadherin complexes is disrupted. Here, we used immunohistochemistry of inflammatory breast cancer patient samples and analysis of cell lines to determine the expression of PLEKHA7, an apical adherens junction protein. We used viral transduction to re-express PLEKHA7 in inflammatory breast cancer cells and examined their aggressiveness in 2D and 3D cultures and in vivo. We determined that PLEKHA7 was deregulated in inflammatory breast cancer, demonstrating improper localization or lost expression in most patient samples and very low expression in cell lines. Re-expressing PLEKHA7 suppressed proliferation, anchorage independent growth, spheroid viability, and tumor growth in vivo. The data indicate that PLEKHA7 is frequently deregulated and acts to suppress inflammatory breast cancer. The data also promote the need for future inquiry into the imbalance between apical and basolateral cadherin complexes as driving forces in inflammatory breast cancer.


Neuron ◽  
2003 ◽  
Vol 39 (6) ◽  
pp. 1005-1017 ◽  
Author(s):  
Hiroshi Suzuki ◽  
Rex Kerr ◽  
Laura Bianchi ◽  
Christian Frøkjær-Jensen ◽  
Dan Slone ◽  
...  

Methods ◽  
2014 ◽  
Vol 68 (3) ◽  
pp. 518-528 ◽  
Author(s):  
Lei Wang ◽  
Anjon Audhya
Keyword(s):  

APOPTOSIS ◽  
2005 ◽  
Vol 10 (5) ◽  
pp. 1187-1189 ◽  
Author(s):  
U. C. Sharma ◽  
L. Hofstra ◽  
Y. M. Pinto ◽  
J. G. Maessen

2010 ◽  
Vol 344 (1) ◽  
pp. 508-509
Author(s):  
Kausalya T. Murthy ◽  
Jaffar Bhat ◽  
Sandhya P. Koushika

Sign in / Sign up

Export Citation Format

Share Document