scholarly journals Fall Detection System-Based Posture-Recognition for Indoor Environments

2021 ◽  
Vol 7 (3) ◽  
pp. 42
Author(s):  
Abderrazak Iazzi ◽  
Mohammed Rziza ◽  
Rachid Oulad Haj Thami

The majority of the senior population lives alone at home. Falls can cause serious injuries, such as fractures or head injuries. These injuries can be an obstacle for a person to move around and normally practice his daily activities. Some of these injuries can lead to a risk of death if not handled urgently. In this paper, we propose a fall detection system for elderly people based on their postures. The postures are recognized from the human silhouette which is an advantage to preserve the privacy of the elderly. The effectiveness of our approach is demonstrated on two well-known datasets for human posture classification and three public datasets for fall detection, using a Support-Vector Machine (SVM) classifier. The experimental results show that our method can not only achieves a high fall detection rate but also a low false detection.

Author(s):  
Nishanth P

Falls have become one of the reasons for death. It is common among the elderly. According to World Health Organization (WHO), 3 out of 10 living alone elderly people of age 65 and more tend to fall. This rate may get higher in the upcoming years. In recent years, the safety of elderly residents alone has received increased attention in a number of countries. The fall detection system based on the wearable sensors has made its debut in response to the early indicator of detecting the fall and the usage of the IoT technology, but it has some drawbacks, including high infiltration, low accuracy, poor reliability. This work describes a fall detection that does not reliant on wearable sensors and is related on machine learning and image analysing in Python. The camera's high-frequency pictures are sent to the network, which uses the Convolutional Neural Network technique to identify the main points of the human. The Support Vector Machine technique uses the data output from the feature extraction to classify the fall. Relatives will be notified via mobile message. Rather than modelling individual activities, we use both motion and context information to recognize activities in a scene. This is based on the notion that actions that are spatially and temporally connected rarely occur alone and might serve as background for one another. We propose a hierarchical representation of action segments and activities using a two-layer random field model. The model allows for the simultaneous integration of motion and a variety of context features at multiple levels, as well as the automatic learning of statistics that represent the patterns of the features.


Sensors ◽  
2021 ◽  
Vol 21 (13) ◽  
pp. 4335
Author(s):  
Goran Šeketa ◽  
Lovro Pavlaković ◽  
Dominik Džaja ◽  
Igor Lacković ◽  
Ratko Magjarević

Automatic fall detection systems ensure that elderly people get prompt assistance after experiencing a fall. Fall detection systems based on accelerometer measurements are widely used because of their portability and low cost. However, the ability of these systems to differentiate falls from Activities of Daily Living (ADL) is still not acceptable for everyday usage at a large scale. More work is still needed to raise the performance of these systems. In our research, we explored an essential but often neglected part of accelerometer-based fall detection systems—data segmentation. The aim of our work was to explore how different configurations of windows for data segmentation affect detection accuracy of a fall detection system and to find the best-performing configuration. For this purpose, we designed a testing environment for fall detection based on a Support Vector Machine (SVM) classifier and evaluated the influence of the number and duration of segmentation windows on the overall detection accuracy. Thereby, an event-centered approach for data segmentation was used, where windows are set relative to a potential fall event detected in the input data. Fall and ADL data records from three publicly available datasets were utilized for the test. We found that a configuration of three sequential windows (pre-impact, impact, and post-impact) provided the highest detection accuracy on all three datasets. The best results were obtained when either a 0.5 s or a 1 s long impact window was used, combined with pre- and post-impact windows of 3.5 s or 3.75 s.


Author(s):  
He Xu ◽  
Leixian Shen ◽  
Qingyun Zhang ◽  
Guoxu Cao

Accidental fall detection for the elderly who live alone can minimize the risk of death and injuries. In this article, we present a new fall detection method based on "deep learning and image, where a human body recognition model-DeeperCut is used. First, a camera is used to get the detection source data, and then the video is split into images which can be input into DeeperCut model. The human key point data in the output map and the label of the pictures are used as training data to input into the fall detection neural network. The output model then judges the fall of the subsequent pictures. In addition, the fall detection system is designed and implemented with using Raspberry Pi hardware in a local network environment. The presented method obtains a 100% fall detection rate in the experimental environment. The false positive rate on the test set is around 1.95% which is very low and can be ignored because this will be checked by using SMS, WeChat and other SNS tools to confirm falls. Experimental results show that the proposed fall behavior recognition is effective and feasible to be deployed in home environment.


2020 ◽  
Author(s):  
Faisal Hussain ◽  
Muhammad Basit Umair ◽  
Muhammad Ehatisham-ul-Haq ◽  
Ivan Miguel Pires ◽  
Tânia Valente ◽  
...  

Abstract Falling is a commonly occurring mishap with elderly people, which may cause serious injuries. Thus, rapid fall detection is very important in order to mitigate the severe effects of fall among the elderly people. Many fall monitoring systems based on the accelerometer have been proposed for the fall detection. However, many of them mistakenly identify the daily life activities as fall or fall as daily life activity. To this aim, an efficient machine learning-based fall detection algorithm has been proposed in this paper. The proposed algorithm detects fall with efficient sensitivity, specificity, and accuracy as compared to the state-of-the-art techniques. A publicly available dataset with a very simple and computationally efficient set of features is used to accurately detect the fall incident. The proposed algorithm reports and accuracy of 99.98% with the Support Vector Machine(SVM) classifier.


2018 ◽  
Vol 7 (4.36) ◽  
pp. 488
Author(s):  
Nur Syazarin Natasha Abd Aziz ◽  
Salwani Mohd Daud ◽  
Nurul Iman Mohd Sa’at

Fall is an increasing problem as people ageing. It may happen to anyone, but their incidence does increase with age. Hence, the elderly will be facing catastrophic consequences due to falls. Nevertheless, there are still vulnerable in its accuracy in categorizing and differentiating the Activities Daily Living (ADL) and falls as most of the existing systems cause false alarm. This paper presents the research and simulation of wearable device-based fall detection approach by addressing the building of wearable device-based fall detection system for elderly care by using mobile devices. Two main phases involve in this research: online phase and offline phase. Online phase covers in data acquisition step whereby the raw data of simulated fall by participants is collected via built-in-tri-axial accelerometer in a smartphone, then automatically sent towards the computer via wireless communication. Meanwhile, offline phase covers data pre-processing, feature extraction and selection and data classification where these steps are handled in offline mode. Support Vector Machine (SVM) classifier was employed, and evaluated in the analysis. Overall accuracy rate, sensitivity, specificity as well as False Positive Rate (FPR) and False Negative Rate (FNR) were calculated. The findings suggest that SVM with Polynomial (order 5) method which achieved 68.91% overall accuracy as well as producing only 24.46% FPR is the most precise model for fall detection system in this paper. This approach has the potential to be implemented and deploy in real mobile application in future.   


Electronics ◽  
2019 ◽  
Vol 8 (9) ◽  
pp. 915 ◽  
Author(s):  
Saturnino Maldonado-Bascón ◽  
Cristian Iglesias-Iglesias ◽  
Pilar Martín-Martín ◽  
Sergio Lafuente-Arroyo

One of the main problems in the elderly population and for people with functional disabilities is falling when they are not supervised. Therefore, there is a need for monitoring systems with fall detection functionality. Mobile robots are a good solution for keeping the person in sight when compared to static-view sensors. Mobile-patrol robots can be used for a group of people and systems are less intrusive than ones based on mobile robots. In this paper, we propose a novel vision-based solution for fall detection based on a mobile-patrol robot that can correct its position in case of doubt. The overall approach can be formulated as an end-to-end solution based on two stages: person detection and fall classification. Deep learning-based computer vision is used for person detection and fall classification is done by using a learning-based Support Vector Machine (SVM) classifier. This approach mainly fulfills the following design requirements—simple to apply, adaptable, high performance, independent of person size, clothes, or the environment, low cost and real-time computing. Important to highlight is the ability to distinguish between a simple resting position and a real fall scene. One of the main contributions of this paper is the input feature vector to the SVM-based classifier. We evaluated the robustness of the approach using a realistic public dataset proposed in this paper called the Fallen Person Dataset (FPDS), with 2062 images and 1072 falls. The results obtained from different experiments indicate that the system has a high success rate in fall classification (precision of 100% and recall of 99.74%). Training the algorithm using our Fallen Person Dataset (FPDS) and testing it with other datasets showed that the algorithm is independent of the camera setup.


2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Ning Liu ◽  
Dedi Zhang ◽  
Zhong Su ◽  
Tianrun Wang

The aging population has become a growing worldwide problem. Every year, deaths and injuries caused by elderly people's falls bring huge social costs. To reduce the rate of injury and death caused by falls among the elderly and the following social cost, the elderly must be monitored. In this context, falls detecting has become a hotspot for many research institutions and enterprises at home and abroad. This paper proposes an algorithm framework to prealarm the fall based on fractional domain, using inertial data sensor as motion data collection devices, preprocessing the data by axis synthesis and mean filtering, and using fractional-order Fourier transform to convert the collected data from time domain to fractional domain. Based on the above, a multilayer dichotomy classifier is designed, and each node parameter selection method is given, which constructed a preimpact fall detection system with excellent performance. The experiment result demonstrates that the algorithm proposed in this paper can guarantee better warning effect and classification accuracy with fewer features.


Sign in / Sign up

Export Citation Format

Share Document