scholarly journals Multi-Frequency Image Completion via a Biologically-Inspired Sub-Riemannian Model with Frequency and Phase

2021 ◽  
Vol 7 (12) ◽  
pp. 271
Author(s):  
Emre Baspinar

We present a novel cortically-inspired image completion algorithm. It uses five-dimensional sub-Riemannian cortical geometry, modeling the orientation, spatial frequency and phase-selective behavior of the cells in the visual cortex. The algorithm extracts the orientation, frequency and phase information existing in a given two-dimensional corrupted input image via a Gabor transform and represents those values in terms of cortical cell output responses in the model geometry. Then, it performs completion via a diffusion concentrated in a neighborhood along the neural connections within the model geometry. The diffusion models the activity propagation integrating orientation, frequency and phase features along the neural connections. Finally, the algorithm transforms the diffused and completed output responses back to the two-dimensional image plane.

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
E. Baspinar ◽  
A. Sarti ◽  
G. Citti

Abstract In this paper, we present a novel model of the primary visual cortex (V1) based on orientation, frequency, and phase selective behavior of V1 simple cells. We start from the first-level mechanisms of visual perception, receptive profiles. The model interprets V1 as a fiber bundle over the two-dimensional retinal plane by introducing orientation, frequency, and phase as intrinsic variables. Each receptive profile on the fiber is mathematically interpreted as rotated, frequency modulated, and phase shifted Gabor function. We start from the Gabor function and show that it induces in a natural way the model geometry and the associated horizontal connectivity modeling of the neural connectivity patterns in V1. We provide an image enhancement algorithm employing the model framework. The algorithm is capable of exploiting not only orientation but also frequency and phase information existing intrinsically in a two-dimensional input image. We provide the experimental results corresponding to the enhancement algorithm.


Author(s):  
Adi Mora Lubis ◽  
Nelly Astuti Hasibuan ◽  
Imam Saputra

Digital imagery is a two-dimensional image process through a digital computer that is used to manipulate and modify images in various ways. Photos are examples of two-dimensional images that can be processed easily. Each photo in the form of a digital image can be processed through a specific software. In the water environment, the light factor greatly influences the results of the quality of the image obtained. With the deepening of underwater shooting, the results obtained will be the darker the quality of the underwater image. . uneven lighting and bluish tones. One of the factors that influence the recognition results in pattern recognition is the quality of the image that is inputted. The image acquired from the source does not always have good quality. The process of repairing digital images that experience interference in lighting. The lighting repair process uses homomorphic filtering and uses contrast striching and will compare the quality of both methods and test to prove the results of image quality between homomorphic filtering and contrast streching. Until later the results of both methods can be seen which is better. homomorphic filtering and contrast stretching can produce image improvements with pretty good performance.Keywords: Digital Image, Underwater Image, Homomorphic Filtering, Contrast Streching, Matlab R2010a


Author(s):  
Bainun Harahap

Digital imagery is a two-dimensional image process through a digital computer that is used to manipulate and modify images in various ways. Photos are examples of two-dimensional images that can be processed easily. Each photo in the form of a digital image can be processed through certain software devices. In the water environment, light factors greatly influence the results of image quality obtained. With the deepening of underwater shooting, the results obtained will be the darker the quality of the underwater image. Underwater imagery is widely used as an object in various activities such as underwater habitat mapping, underwater environment monitoring, underwater object search. Uneven lighting and colors that tend to be bluish and runny. One of the factors that influence the recognition results in pattern recognition is the quality of the image that is inputted. The image acquired from the source does not always have good quality. The process of improvement in digital images that experience interference in lighting and exposure to sunlight. The lighting repair process uses the retinex method and will compare the quality of the two methods later. Until later the results of both methods can be seen which is better. Retinex method can produce image improvement with high performance.Keywords: Digital Cintra, Underwater, Matlab Retinex Method


Micromachines ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 929
Author(s):  
Xudong Yang ◽  
Zexiao Li ◽  
Linlin Zhu ◽  
Yuchu Dong ◽  
Lei Liu ◽  
...  

Taper-cutting experiments are important means of exploring the nano-cutting mechanisms of hard and brittle materials. Under current cutting conditions, the brittle-ductile transition depth (BDTD) of a material can be obtained through a taper-cutting experiment. However, taper-cutting experiments mostly rely on ultra-precision machining tools, which have a low efficiency and high cost, and it is thus difficult to realize in situ measurements. For taper-cut surfaces, three-dimensional microscopy and two-dimensional image calculation methods are generally used to obtain the BDTDs of materials, which have a great degree of subjectivity, leading to low accuracy. In this paper, an integrated system-processing platform is designed and established in order to realize the processing, measurement, and evaluation of taper-cutting experiments on hard and brittle materials. A spectral confocal sensor is introduced to assist in the assembly and adjustment of the workpiece. This system can directly perform taper-cutting experiments rather than using ultra-precision machining tools, and a small white light interference sensor is integrated for in situ measurement of the three-dimensional topography of the cutting surface. A method for the calculation of BDTD is proposed in order to accurately obtain the BDTDs of materials based on three-dimensional data that are supplemented by two-dimensional images. The results show that the cutting effects of the integrated platform on taper cutting have a strong agreement with the effects of ultra-precision machining tools, thus proving the stability and reliability of the integrated platform. The two-dimensional image measurement results show that the proposed measurement method is accurate and feasible. Finally, microstructure arrays were fabricated on the integrated platform as a typical case of a high-precision application.


2013 ◽  
Vol 21 (3) ◽  
pp. 552-562
Author(s):  
Hsuan-Chun Liao ◽  
Mochamad Asri ◽  
Tsuyoshi Isshiki ◽  
Dongju Li ◽  
Hiroaki Kunieda

Sign in / Sign up

Export Citation Format

Share Document