scholarly journals Experimental and Numerical Studies on Fluid–Structure Interaction for Underwater Drop of a Stone-Breaking Crusher

2021 ◽  
Vol 10 (1) ◽  
pp. 30
Author(s):  
Jung Min Sohn ◽  
Ji Woo Kim ◽  
Sang Ho Kim

There are many methods for crushing seabed rock such as a using a free-falling crusher, blasting, and chemical liquid expansion. Blasting and chemical liquid expansion can lead to environmental destruction, noise pollution, and civil complaints. Therefore, a free-falling crusher is generally recommended for use. Understanding the characteristics of a crusher in water and the impact force on the ground is helpful for designing a crusher and dredge work. In this study, drop tests of 50 and 70 ton crusher models that were scaled down by 15 times were investigated. The tests were conducted in a water basin by the Research Institute of Medium and Small Shipbuilding (RIMS) in Korea. Four water depths were considered with different falling locations: water surface and air. Moreover, a numerical study on Fluid–Structure Interaction (FSI) analysis for a free-falling crusher was conducted by applying the Arbitrary Lagrangian–Eulerian (ALE) element and the Grüneisen Equation of State (EoS) to fluid models. The crusher and ground were modeled as Lagrangian elements to estimate the impact force on the ground. Before comparing the crusher model, a free-falling sphere model was used to develop FSI technologies by comparing past Computational Fluid Dynamics (CFD) and experimental results. Moreover, the recommended mesh size and fluid domain for FSI analysis are provided to achieve good results via convergence tests. Comparison between experimental and numerical methods demonstrated a similar tendency such that impact force increased at a higher depth. Certain numerical results agree with average values of experimental results; however, multiple numerical cases exhibit a moderate difference. This is because of angular rotation between the crusher and ground when the crusher hits the ground during experiments.

Author(s):  
Tomohisa Kojima ◽  
Kazuaki Inaba ◽  
Kosuke Takahashi

This paper reports on investigations conducted with a view towards developing a theoretical model for wave propagation across solid-fluid interfaces with fluid-structure interaction. Although many studies have been conducted, the mechanism of wave propagation close to the solid-fluid interface remains unclear. Consequently, our aim is to clarify the mechanism of wave propagation across the solid-fluid interface with fluid-structure interaction and develop a theoretical model to explain this phenomenon. In experiments conducted to develop the theory, a free-falling steel projectile is used to impact the top of a solid buffer placed immediately above the surface of water within a polycarbonate tube. The stress waves created as a result of the impact of the projectile propagated through the buffer and reached the interface of the buffer and water (fluid) in the tube. Two different buffers (polycarbonate and aluminum) were used to examine the interaction effects. The results of the experiments indicated that the amplitude of the interface pressure increased in accordance with the characteristic impedance of the solid medium. This cannot be explained by the classical theory of wave reflection and transmission. Thus, it is clear that on the solid-fluid interface with fluid-structure interaction, classical theories alone cannot precisely predict the generated pressure.


2010 ◽  
Vol 19 (3) ◽  
pp. 096369351001900
Author(s):  
G. Mohamed ◽  
C. Soutis ◽  
A. Hodzic

A numerical study into the dynamic behaviour of hybrid pressurised barrels manufactured from GLARE (Glass fibre Reinforced laminate) has been performed using the Arbitrary-Lagrangian-Eulerian (ALE) method that accounts for fluid structure interaction within the explicit finite element software RADIOSS. The results high-lighted the importance of the geometrical features of the closed barrel when assessing the shock wave propagation of the blast wave. Also the effect of pre-pressurisation was studied which proved significant in providing additional internal energy to the system. It was concluded that pressurisation should be accounted in all future studies to model the dynamic crack growth and structural integrity of typical aircraft structures subjected to blast.


Author(s):  
Bhuiyan Shameem Mahmood Ebna Hai ◽  
Markus Bause

Advanced composite materials such as Carbon Fiber Reinforced Plastics (CFRP) are being applied to many aircraft structures in order to improve performance and reduce weight. Most composites have strong, stiff fibers in a matrix which is weaker and less stiff. However, aircraft wings can break due to Fluid-Structure Interaction (FSI) oscillations or material fatigue. This paper focuses on the analysis of a non-linear fluid-structure interaction problem and its solution in the finite element software package DOpElib: the deal.II based optimization library. The principal aim of this research is to explore and understand the behaviour of the fluid-structure interaction during the impact of a deformable material (e.g. an aircraft wing) on air. Here we briefly describe the analysis of incompressible Navier-Stokes and Elastodynamic equations in the arbitrary Lagrangian-Eulerian (ALE) frameworks in order to numerically simulate the FSI effect on a double wedge airfoil. Since analytical solutions are only available in special cases, the equation needs to be solved by numerical methods. This coupled problem is defined in a monolithic framework and fractional-step-θ time stepping scheme are implemented. Spatial discretization is based on a Galerkin finite element scheme. The non-linear system is solved by a Newton method. The implementation using the software library package DOpElib and deal.II serves for the computation of different fluid-structure configurations.


2007 ◽  
Vol 2 (4) ◽  
pp. 366-373 ◽  
Author(s):  
Li Zheng ◽  
Jin Xiang-long ◽  
Chen Xiang-dong

The crashworthiness of a dual layer fuel tank, with the outer layer made of metal and the inner layer made of woven fabric composite material, is fundamental for the survivability of an impact with the ground in emergency. In this research, the simulation of a three-dimensional dual layer fuel tank in the impact with the ground is achieved through the multimaterial arbitrary Lagrangian-Eulerian (ALE) finite element method because of its ability to control mesh geometry independently of geometry. At the same time, the naked flexible tank in the impact with the ground is simulated for the evaluation of the outer metal tank. The ALE description is adopted for the fluid domain, while for the structural domain the Lagrangian formulation is considered. The computation of the fluid-structure interaction and the impact contact between the tank and the ground are realized by the penalty-based coupling method. Then, the dynamic behaviors of the dual layer fuel tank and the naked flexible tank in the impact are analyzed. In the meantime, the parallelism of the dual layer fuel tank is discussed because the computation of the fluid-structure interaction and the impact contact is quite time consuming. Based on domain decomposition, the recursive coordinate bisection (RCB) is improved according to the time-consuming characteristics of fluid-filled tank in the impact. The result indicates, comparing with the RCB algorithm, that the improved recursive coordinate bisection algorithm has improved the speedup and parallel efficiency.


Author(s):  
Bhuiyan Shameem Mahmood Ebna Hai

Nowadays, advanced composite materials such as carbon fiber reinforced plastics (CFRP) are being applied to many aircraft structures in order to improve performance and reduce weight. Most composites have strong, stiff fibres in a matrix which is weaker and less stiff. However, aircraft wings can break due to Fluid-Structure Interaction (FSI) oscillations or material fatigue. The airflow around an airplane wing causes the wing to deform, while a wing deformation causes a change in the air pattern around it. Due to thrust force, turbulent flow and high speed, fluid-structure interaction (FSI) is very important and arouses complex mechanical effects. Due to the non-linear properties of fluids and solids as well as the shape of the structures, only numerical approaches can be used to solve such problems. The principal aim of this research is to explore and understand the behaviour of the fluid-structure interaction during the impact of a deformable material (e.g. an aircraft wing) on air. This project focuses on the analysis of Navier-Stokes and elastodynamic equations in the arbitrary Lagrangian-Eulerian (ALE) frameworks in order to numerically simulate the FSI effect on a double wedge airfoil. Since analytical solutions are only available in special cases, the equation needs to be solved by numerical methods. Of all methods, the finite element method was chosen due to its special characteristics and for its implementation, the software package DOpElib.


Author(s):  
Jong-Jin Jung ◽  
Hyun-Ho Lee ◽  
Tae-Hyun Park ◽  
Young-Woo Lee

The hydro-elasticity effect of sloshing loads in LNG cargo tank has been studied through experiments and numerical simulations regarding the fluid-structure interaction between sloshing impact pressures and tank structures. Sloshing model tests with 1/50 scale membrane type tanks were carried out for 1-D regular harmonic motion to investigate variations of impact pressures due to elasticity differences of the tank structure. Numerical simulations were performed and validated for the same case. Additionally, wall impinging jet flow was simulated by numerical simulation to verify the relation between elasticity of structure and impact pressure. It was commonly observed that the elasticity of the tank structure had significant influence on the height and shape of the impact pressure peak. Numerical study showed that the ratio between the structural natural period and the duration of the impact pressure is important for the influence of impact pressure on the tank structure.


2021 ◽  
Vol 31 (5) ◽  
pp. 1373-1395
Author(s):  
Iman Mazinani ◽  
Mohammad Mohsen Sarafraz ◽  
Zubaidah Ismail ◽  
Ahmad Mustafa Hashim ◽  
Mohammad Reza Safaei ◽  
...  

Purpose Two disastrous Tsunamis, one on the west coast of Sumatra Island, Indonesia, in 2004 and another in North East Japan in 2011, had seriously destroyed a large number of bridges. Thus, experimental tests in a wave flume and a fluid structure interaction (FSI) analysis were constructed to gain insight into tsunami bore force on coastal bridges. Design/methodology/approach Various wave heights and shallow water were used in the experiments and computational process. A 1:40 scaled concrete bridge model was placed in mild beach profile similar to a 24 × 1.5 × 2 m wave flume for the experimental investigation. An Arbitrary Lagrange Euler formulation for the propagation of tsunami solitary and bore waves by an FSI package of LS-DYNA on high-performance computing system was used to evaluate the experimental results. Findings The excellent agreement between experiments and computational simulation is shown in results. The results showed that the fully coupled FSI models could capture the tsunami wave force accurately for all ranges of wave heights and shallow depths. The effects of the overturning moment, horizontal, uplift and impact forces on a pier and deck of the bridge were evaluated in this research. Originality/value Photos and videos captured during the Indian Ocean tsunami in 2004 and the 2011 Japan tsunami showed solitary tsunami waves breaking offshore, along with an extremely turbulent tsunami-induced bore propagating toward shore with significantly higher velocity. Consequently, the outcomes of this current experimental and numerical study are highly relevant to the evaluation of tsunami bore forces on the coastal, over sea or river bridges. These experiments assessed tsunami wave forces on deck pier showing the complete response of the coastal bridge over water.


2018 ◽  
Vol 435 ◽  
pp. 23-35 ◽  
Author(s):  
Shigeki Kaneko ◽  
Giwon Hong ◽  
Naoto Mitsume ◽  
Tomonori Yamada ◽  
Shinobu Yoshimura

Sign in / Sign up

Export Citation Format

Share Document