scholarly journals Implementation of a Coastal Management Model at Kinvara Bay in the North Atlantic Ocean

2020 ◽  
Vol 8 (2) ◽  
pp. 71
Author(s):  
Catalin Anton ◽  
Carmen Gasparotti ◽  
Iulia Anton ◽  
Eugen Rusu

Applying a management model to coastal areas is always a challenge because of the multiple scenarios from which they can be addressed. The coastal zone represents a dynamic area, which can be analyzed using physical processes. However, it can also be analyzed from the perspective of land–sea interaction or the socio-economic activities that take place in the area. Last but not least, the coastal area holds great significance for biodiversity, as well as for the communities that live there, their traditions and customs, and their cultural heritage, especially in the context of climate change and sea-level rise. In this context, the present paper aims to analyze the social and economic aspects of environmental protection issues and how these factors, identified by a series of indicators, can coexist together. The target area is Kinvara Bay, which is located south of the Atlantic’s Galway Bay, in the western part of Ireland.

Author(s):  
N. Penny Holliday ◽  
Stephanie Henson

The growth, distribution, and variability of phytoplankton populations in the North Atlantic are primarily controlled by the physical environment. This chapter provides an overview of the regional circulation of the North Atlantic, and an introduction to the key physical features and processes that affect ecosystems, and especially plankton, via the availability of light and nutrients. There is a natural seasonal cycle in primary production driven by physical processes that determine the light and nutrient levels, but the pattern has strong regional variations. The variations are determined by persistent features on the basin scale (e.g. the main currents and mixed layer regimes of the subtropical and subpolar gyres), as well as transient mesoscale features such as eddies and meanders of fronts.


2018 ◽  
Vol 612 ◽  
pp. 1141-1148 ◽  
Author(s):  
Min Zhang ◽  
Yuanling Zhang ◽  
Qi Shu ◽  
Chang Zhao ◽  
Gang Wang ◽  
...  

2021 ◽  
Vol 56 (7-8) ◽  
pp. 2027-2056
Author(s):  
Sandra M. Plecha ◽  
Pedro M. M. Soares ◽  
Susana M. Silva-Fernandes ◽  
William Cabos

Eos ◽  
1986 ◽  
Vol 67 (44) ◽  
pp. 835 ◽  
Author(s):  
W. E. Esaias ◽  
G. C. Feldman ◽  
C. R. McClain ◽  
J. A. Elrod

2014 ◽  
Vol 31 (6) ◽  
pp. 1434-1445 ◽  
Author(s):  
Federico Ienna ◽  
Young-Heon Jo ◽  
Xiao-Hai Yan

Abstract Subsurface coherent vortices in the North Atlantic, whose saline water originates from the Mediterranean Sea and which are known as Mediterranean eddies (meddies), have been of particular interest to physical oceanographers since their discovery, especially for their salt and heat transport properties into the North Atlantic Ocean. Many studies in the past have been successful in observing and studying the typical properties of meddies by probing them with in situ techniques. The use of remote sensing techniques would offer a much cheaper and easier alternative for studying these phenomena, but only a few past studies have been able to study meddies by remote sensing, and a reliable method for observing them remotely remains elusive. This research presents a new way of locating and tracking meddies in the North Atlantic Ocean using satellite altimeter data. The method presented in this research makes use of ensemble empirical mode decomposition (EEMD) as a means to isolate the surface expressions of meddies on the ocean surface and separates them from any other surface constituents, allowing robust meddies to be consistently tracked by satellite. One such meddy is successfully tracked over a 6-month time period (2 November 2005 to 17 May 2006). Results of the satellite tracking method are verified using expendable bathythermographs (XBT).


2015 ◽  
Vol 137 ◽  
pp. 261-283 ◽  
Author(s):  
Benjamin S. Twining ◽  
Sara Rauschenberg ◽  
Peter L. Morton ◽  
Stefan Vogt

Sign in / Sign up

Export Citation Format

Share Document