scholarly journals Numerical Analysis of Storm Surges on Canada’s Western Arctic Coastline

2021 ◽  
Vol 9 (3) ◽  
pp. 326
Author(s):  
Joseph Kim ◽  
Enda Murphy ◽  
Ioan Nistor ◽  
Sean Ferguson ◽  
Mitchel Provan

A numerical study was conducted to characterize the probability and intensity of storm surge hazards in Canada’s western Arctic. The utility of the European Centre for Medium-Range Weather Forecasts Reanalysis 5th Generation (ERA5) dataset to force numerical simulations of storm surges was explored. Fifty historical storm surge events that were captured on a tide gauge near Tuktoyaktuk, Northwest Territories, were simulated using a two-dimensional (depth-averaged) hydrodynamic model accounting for the influence of sea ice on air-sea momentum transfer. The extent of sea ice and the duration of the ice season has been reducing in the Arctic region, which may contribute to increasing risk from storm surge-driven hazards. Comparisons between winter storm events under present-day ice concentrations and future open-water scenarios revealed that the decline in ice cover has potential to result in storm surges that are up to three times higher. The numerical model was also used to hindcast a significant surge event that was not recorded by the tide gauge, but for which driftwood lines along the coast provided insights to the high-water marks. Compared to measurements at proximate meteorological stations, the ERA5 reanalysis dataset provided reasonable estimates of atmospheric pressure but did not accurately capture peak wind speeds during storm surge events. By adjusting the wind drag coefficients to compensate, reasonably accurate predictions of storm surges were attained for most of the simulated events. The extreme value probability distributions (i.e., return periods and values) of the storm surges were significantly altered when events absent from the tide gauge record were included in the frequency analysis, demonstrating the value of non-conventional data sources, such as driftwood line surveys, in supporting coastal hazard assessments in remote regions.

Author(s):  
Tsubasa Kodaira ◽  
Takuji Waseda ◽  
Takehiko Nose ◽  
Jun Inoue ◽  
Kazutoshi Sato ◽  
...  

Abstract Surface ocean waves are one of the potential processes that influence on the Arctic sea-ice extent. A better understanding of the generation, propagation, and attenuation of ocean waves under the sea ice is necessary to discuss the future Arctic climate change. We deployed two drifting wave buoys in the marginal ice zone in the western Arctic. Since the surface wave observation in the marginal ice zone is rare, the obtained data are useful for validation of the numerical modeling of the surface waves under the sea ice. The first buoy was deployed in the pancake-ice covered area and the second one in the open ocean. The distance between the two buoys at the deployment was about 40km, and the second buoy was deployed approximately 5 hours after the first deployment. The comparison of the wave bulk statistic measured by the two buoys shows the wave transformation under the sea ice. In general, the significant wave height decreases, and the mean wave periods increase by the presence of the sea ice.


2014 ◽  
Vol 11 (4) ◽  
pp. 1995-2028 ◽  
Author(s):  
M. P. Wadey ◽  
I. D. Haigh ◽  
J. M. Brown

Abstract. For the UK's longest and most complete sea level record (Newlyn), we assess extreme high water events and their temporal clustering; prompted by the 2013/2014 winter of flooding and storms. These are set into context against this almost 100 yr record. We define annual periods for which storm activity, tides and sea levels can be compared on a year-by-year basis. Amongst the storms and high tides which affected Newlyn the recent winter produced the largest recorded high water (3 February 2014) and five others above a 1 in 1 yr return period. The large magnitude of tide and mean sea level, and the close inter-event spacings (of large return period high waters), suggests that the 2013/2014 high water "season" may be considered the most extreme on record. However, storm and sea level events may be classified in different ways. For example in the context of sea level rise (which we calculate linearly as 1.81 ± 0.1 mm yr−1 from 1915 to 2014), a lower probability combination of surge and tide occurred on 29 January 1948, whilst 1995/1996 storm surge season saw the most high waters of ≥ 1 in 1 yr return period. We provide a basic categorisation of five types of high water cluster, ranging from consecutive tidal cycles to multiple years. The assessment is extended to other UK sites (with shorter sea level records and different tide-surge characteristics), which suggests 2013/2014 was extreme, although further work should assess clustering mechanisms and flood system "memory".


2000 ◽  
Vol 1 (1) ◽  
pp. 45 ◽  
Author(s):  
G. MUNGOV ◽  
P. DANIEL

The frequency of the storm surges in the Black Sea is lower than that in other regions of the World Ocean but they cause significant damages as the magnitude of the sea level set-up is up to 7-8 times greater than that of other sea level variations. New methods and systems for storm surge forecasting and studying their statistical characteristics are absolutely necessary for the purposes of the coastal zone management. The operational forecasting storm surge model of Meteo-France was adopted for the Black Sea in accordance with the bilateral agreement between Meteo-France and NINMH. The model was verified using tide-gauge observations for the strongest storms observed along the Bulgarian coast over the last 10 years.


2020 ◽  
Vol 37 (8) ◽  
pp. 1477-1495 ◽  
Author(s):  
An T. Nguyen ◽  
Patrick Heimbach ◽  
Vikram V. Garg ◽  
Victor Ocaña ◽  
Craig Lee ◽  
...  

AbstractThe lack of continuous spatial and temporal sampling of hydrographic measurements in large parts of the Arctic Ocean remains a major obstacle for quantifying mean state and variability of the Arctic Ocean circulation. This shortcoming motivates an assessment of the utility of Argo-type floats, the challenges of deploying such floats due to the presence of sea ice, and the implications of extended times of no surfacing on hydrographic inferences. Within the framework of an Arctic coupled ocean–sea ice state estimate that is constrained to available satellite and in situ observations, we establish metrics for quantifying the usefulness of such floats. The likelihood of float surfacing strongly correlates with the annual sea ice minimum cover. Within the float lifetime of 4–5 years, surfacing frequency ranges from 10–100 days in seasonally sea ice–covered regions to 1–3 years in multiyear sea ice–covered regions. The longer the float drifts under ice without surfacing, the larger the uncertainty in its position, which translates into larger uncertainties in hydrographic measurements. Below the mixed layer, especially in the western Arctic, normalized errors remain below 1, suggesting that measurements along a path whose only known positions are the beginning and end points can help constrain numerical models and reduce hydrographic uncertainties. The error assessment presented is a first step in the development of quantitative methods for guiding the design of observing networks. These results can and should be used to inform a float network design with suggested locations of float deployment and associated expected hydrographic uncertainties.


2020 ◽  
Vol 61 (82) ◽  
pp. 164-170
Author(s):  
Ioanna Merkouriadi ◽  
Bin Cheng ◽  
Stephen R. Hudson ◽  
Mats A. Granskog

AbstractWe examine the relative effect of warming events (storms) and snow cover on thermodynamic growth of Arctic sea ice in winter. We use a 1-D snow and ice thermodynamic model to perform sensitivity experiments. Observations from the winter period of the Norwegian young sea ICE (N-ICE2015) campaign north of Svalbard are used to initiate and force the model. The N-ICE2015 winter was characterized by frequent storm events that brought pulses of heat and moisture, and a thick snow cover atop the sea ice (0.3–0.5 m). By the end of the winter, sea-ice bottom growth was negligible. We show that the thermodynamic effect of storms to the winter sea-ice growth is controlled by the amount of snow on sea ice. For 1.3 m initial ice thickness, the decrease in ice growth caused by the warming events ranged from −1.4% (for 0.5 m of snow) to −7.5% (for snow-free conditions). The decrease in sea-ice growth caused by the thick snow (0.5 m) was more important, ranging from −17% (with storms) to −23% (without storms). The results showcase the critical role of snow on winter Arctic sea-ice growth.


Author(s):  
Anastasia Korablina ◽  
Anastasia Korablina ◽  
Victor Arkhipkin ◽  
Victor Arkhipkin ◽  
Sergey Dobrolyubov ◽  
...  

Russian priority - the study of storm surges and wave climate in the Arctic seas due to the active development of offshore oil and gas. Researching the formation of storm surge and wave are necessary for the design and construction of facilities in the coastal zone, as well as for the safety of navigation. An inactive port ensues considerable economic losses. It is important to study the variability of storm surges, wave climate in the past and forecast the future. Consequently, this information would be used for planning the development of the Arctic in accordance with the development programme 2020. Mathematical modeling is used to analyze the characteristics of storm surges and wave climate formation from 1979 to 2010 in the White and Barents Seas. Calculation of storm surge heights in the seas is performed using model AdCirc on an unstructured grid with a 20 km pitch in the Barents Sea and 100 m in the White Sea. The model AdCirc used data of wind field reanalysis CFSv2. The simulation of storm surge was conducted with/without pressure, sea state, tides. A non-linear interaction of the surge and tide during the phase of destruction storm surge was detected. Calculation of the wave climate performed using SWAN spectral wave model on unstructured grids. Spatial resolution is 500 m-5 km for the White Sea and 10-20 km for the Barents Sea. NCEP/CFSR (~0.3°) input wind forcing was used. The storminess of the White Sea tends to increase from 1979 to 1991, and then decrease to minimum at 2000 and increase again till 2010.


Author(s):  
Anastasia Korablina ◽  
Anastasia Korablina ◽  
Victor Arkhipkin ◽  
Victor Arkhipkin ◽  
Sergey Dobrolyubov ◽  
...  

Russian priority - the study of storm surges and wave climate in the Arctic seas due to the active development of offshore oil and gas. Researching the formation of storm surge and wave are necessary for the design and construction of facilities in the coastal zone, as well as for the safety of navigation. An inactive port ensues considerable economic losses. It is important to study the variability of storm surges, wave climate in the past and forecast the future. Consequently, this information would be used for planning the development of the Arctic in accordance with the development programme 2020. Mathematical modeling is used to analyze the characteristics of storm surges and wave climate formation from 1979 to 2010 in the White and Barents Seas. Calculation of storm surge heights in the seas is performed using model AdCirc on an unstructured grid with a 20 km pitch in the Barents Sea and 100 m in the White Sea. The model AdCirc used data of wind field reanalysis CFSv2. The simulation of storm surge was conducted with/without pressure, sea state, tides. A non-linear interaction of the surge and tide during the phase of destruction storm surge was detected. Calculation of the wave climate performed using SWAN spectral wave model on unstructured grids. Spatial resolution is 500 m-5 km for the White Sea and 10-20 km for the Barents Sea. NCEP/CFSR (~0.3°) input wind forcing was used. The storminess of the White Sea tends to increase from 1979 to 1991, and then decrease to minimum at 2000 and increase again till 2010.


2021 ◽  
Author(s):  
Carla Mora ◽  
Gonçalo Vieira ◽  
Pedro Pina ◽  
Dustin Whalen ◽  
Annett Bartsch

<p>Arctic permafrost coasts represent about 34% of the Earth’s coastline, with long sections affected by high erosion rates, increasingly threatening coastal communities. Year-round reduction in Arctic sea ice is forecasted and by the end of the 21st century, models indicate a decrease in sea ice area from 43 to 94% in September and from 8 to 34% in February (IPCC, 2014). An increase of the ice-free season leads to a longer exposure to wave action. Monitoring the Arctic coasts is limited by remoteness, climate harshness and difficulty of access for direct surveying, but also, when using satellite remote sensing, by frequent high cloudiness conditions and by illumination. In order to overcome these limitations, three sites at the Beaufort Sea Coast (Clarence lagoon, Hopper Island and Qikiqtaruk/Herschel Island) have been selected for monitoring using very high-resolution microwave X-band spotlight PAZ imagery from Hisdesat. Bluff top, thaw-slump headwalls and water lines were digitised from images acquired during the ice-free seasons of 2019 and 2020 at sub-monthly time-steps. The effects of coastal exposure on delineation accuracy in relation to satellite overpass geometry have been assessed and coastal changes have been quantified and compared to meteorological and tide-gauge data. The results show that PAZ imagery allow for monitoring and quantifying coastal changes at sub-monthly intervals and following the evolution of coastal features, such as small mud-flow fans and retrogressive thaw slumps. This shows that high resolution microwave imagery has a strong potential for significantly advancing coastal monitoring in remote Arctic areas. This research is part of project Nunataryuk funded under the European Union's Horizon 2020 Research and Innovation Programme (grant agreement no. 773421) and of Hisdesat project Coastal Monitoring for Permafrost Research in the Beaufort Sea Coast (Canada). </p>


2021 ◽  
Author(s):  
Ilker Fer ◽  
Till Baumann ◽  
Ying-Chih Fang ◽  
Mario Hoppmann ◽  
Zoe Koenig ◽  
...  

<p>Ocean turbulence measurements under the Arctic sea ice cover are sparse, especially in winter conditions. During the drift of the MOSAiC main camp, we collected vertical profiles of ocean microstructure in the upper 50-80 m using an ascending vertical microstructure profiler. Each profile terminated when the profiler hit the sea ice or broke through the surface in leads, which resolved the turbulent structure up to the ice or surface. These sporadic profile measurements were supplemented by an ice-moored system equipped with fast-response thermistors, collecting continuous time series at approximately 50 m below the ice. Both instruments are manufactured by Rockland Scientific, Canada. While the profiling was conducted from mid-February to mid-September 2020, the moored measurements were in the period between mid-December 2019 and late April 2020, spatially covering from 88°N30' to 84°N in the Amundsen Basin. From the vertical profiler, dissipation rate of turbulent kinetic energy, ε was estimated using the shear probes and the relatively standard methods applied to shear spectra. From the moored records, ε and dissipation rate of temperature variance, χ, were estimated using the high-resolution temperature records and maximum likelihood spectra fitting to the Batchelor spectrum using 75 s segments. This gives an exceptionally high time resolution of turbulence estimates, albeit from a fixed depth. Estimates ranged between 10<sup>-11</sup> to 10<sup>-6</sup> W/kg for ε , and 10<sup>-12</sup> to 10<sup>-6</sup> C<sup>2</sup>/s for χ. The vertical distribution of ε in the upper 50 m and the time variability and statistics of moored estimates will be discussed in relation to various environmental forcing conditions including storm events and convection.</p>


2020 ◽  
Author(s):  
Nary La ◽  
Byoung Woong An ◽  
KiRyong Kang ◽  
Sang Myeong Oh ◽  
YoonJae Kim

<p><span>In recent years, coastal disasters have been frequently caused by typhoons and storm surges accompanied by high waves due to global warming and the changing marine environment. In addition, the development of coastal areas in Korea has also led to suffering great damage to society every year. </span></p><p><span>To cope with this issue, we have developed a new storm-surge prediction system based on the NEMO model for improving the predictability both the tide and the surge. This new regional tide-surge prediction system (RTSM) is constructed with a two-dimensional barotropic sigma coordinates and has a 1/12 degrees horizontal resolution. To find optimal coefficients of this model, several sensitivity experiments were conducted and verified with tide gauge measurements from the KHOA (Korea Hydrographic and Oceanographic Agency). Finally, we selected a bathymetry from SRTM (Shuttle Radar Topography Mission), Charnock coefficient as a constant value of 0.275 and the reference pressure for the inverse barometric effect as the domain mean. As the result of comparing surge-height predictions with the currently operating model (OPER-RTSM), the new system (RTSM) showed roughly 30% higher in forecast accuracy than the previous OPER-RTSM.</span></p>


Sign in / Sign up

Export Citation Format

Share Document