scholarly journals Climate Change Implications Found in Winter Extreme Sea Level Height Records around Korea

2021 ◽  
Vol 9 (4) ◽  
pp. 377
Author(s):  
Dong Eun Lee ◽  
Jaehee Kim ◽  
Yujin Heo ◽  
Hyunjin Kang ◽  
Eun Young Lee

The impact of climatic variability in atmospheric conditions on coastal environments accompanies adjustments in both the frequency and intensity of coastal storm surge events. The top winter season daily maximum sea level height events at 20 tidal stations around South Korea were examined to assess such impact of winter extratropical cyclone variability. As the investigation focusses on the most extreme sea level events, the impact of climate change is found to be invisible. It is revealed that the measures of extreme sea level events—frequency and intensity—do not correlate with the local sea surface temperature anomalies. Meanwhile, the frequency of winter extreme events exhibits a clear association with the concurrent climatic indices. It was determined that the annual frequency of the all-time top 5% winter daily maximum sea level events significantly and positively correlates with the NINO3.4 and Pacific Decadal Oscillation (PDO) indices at the majority of the 20 tidal stations. Hence, this indicates an increase in extreme event frequency and intensity, despite localized temperature cooling. This contradicts the expectation of increases in local extreme sea level events due to thermal expansion and global climate change. During El Nino, it is suggested that northward shifts of winter storm tracks associated with El Nino occur, disturbing the sea level around Korea more often. The current dominance of interannual storm track shifts, due to climate variability, over the impact of slow rise on the winter extreme sea level events, implies that coastal extreme sea level events will change through changes in the mechanical drivers rather than thermal expansion. The major storm tracks are predicted to continue shifting northward. The winter extreme sea level events in the midlatitude coastal region might not go through a monotonic change. They are expected to occur more often and more intensively in the near future, but might not continue doing so when northward shifting storm tracks move away from the marginal seas around Korea, as is predicted by the end of the century.

2019 ◽  
Vol 11 (19) ◽  
pp. 2224 ◽  
Author(s):  
Kamal A. Alawad ◽  
Abdullah M. Al-Subhi ◽  
Mohammed A. Alsaafani ◽  
Turki M. Alraddadi ◽  
Monica Ionita ◽  
...  

Falling between seasonal cycle variability and the impact of local drivers, the sea level in the Red Sea and Gulf of Aden has been given less consideration, especially with large-scale modes. With multiple decades of satellite altimetry observations combined with good spatial resolution, the time has come for diagnosis of the impact of large-scale modes on the sea level in those important semi-enclosed basins. While the annual cycle of sea level appeared as a dominant cycle using spectral analysis, the semi-annual one was also found, although much weaker. The first empirical orthogonal function mode explained, on average, about 65% of the total variance throughout the seasons, while their principal components clearly captured the strong La Niña event (1999–2001) in all seasons. The sea level showed a strong positive relation with positive phase El Niño Southern Oscillation in all seasons and a strong negative relation with East Atlantic/West Russia during winter and spring over the study period (1993–2017). We show that the unusually stronger easterly winds that are displaced north of the equator generate an upwelling area near the Sumatra coast and they drive both warm surface and deep-water masses toward the West Indian Ocean and Arabian Sea, rising sea level over the Red Sea and Gulf of Aden. This process could explain the increase of sea level in the basin during the positive phase of El Niño Southern Oscillation events.


2017 ◽  
Vol 19 (2) ◽  
Author(s):  
Salwa Lubnan Dalimoenthe ◽  
Y Apriana ◽  
T June

<p><em>Climate change has been influencing rainfall pattern so that it would be necessary to see the impact of that changed on tea plantation. The experimental area coverage lowland (600 m asl), midland (800-1000m asl) and highland (&gt;1.000 m asl) tea plantation and each altituted represented by three tea estate in West Java. The rainfall data collected since 2005 up to 2014 from each estate and water deficit has been count through the method develop by Wijaya (1996). The results showed that the rainfall pattern has been changed by La-Nina and El-Nino during 2005-2014 in tea estate either in lowland, midland or highland in the last decade. The climate change caused  rainfall decreasing and increasing on dry month (the rainfall &lt; 100 mm). Eventhough on 2009 there is an significantly increasing of the rainfall but after 2009 until 2014, the rainfall tend to decrease. After El-Nino on late 2009 and early 2010, lowland tea estate on Subang Regency facing water deficit until 5 months with R (defisit water index) far below 1 even there is no El Nino. The tea plantation at midland area (Cianjur Regency) facing 5 months water deficit per year, but the R index close to 1. While in highland tea plantation (Bandung Regency), the water deficit only happend on certain month on certain year although there is a month with zero rainfall. Water deficit could be happend because of runoff on soil surface stimulate by low ability of soil to keep the water.</em></p>


2021 ◽  
Author(s):  
S. Abhik ◽  
Pandora Hope ◽  
Harry H. Hendon ◽  
Lindsay B. Hutley ◽  
Stephanie Johnson ◽  
...  

Abstract This study investigates the underlying climate processes behind the largest recorded mangrove dieback event along the Gulf of Carpentaria coast in northern Australia in late 2015. Capitalizing on the satellite observation-based mangrove green-fraction dataset, variation of the mangroves during recent decades are studied, including their dieback during 2015. The relationship between mangrove greenness and the climate conditions is examined using available observations and by exploring the possible role of the mega 2015-16 El Niño in altering the favorable conditions for the mangroves. The mangrove greenness is shown to be coherent with the low-frequency component of sea-level height variation related to the El Niño southern oscillation (ENSO) cycle in the equatorial Pacific. The sea-level drop associated with the 2015-16 El Niño is identified to be the crucial factor leading to the dieback event. A stronger sea-level drop occurred during austral autumn and winter, when the anomalies were more than 12% greater than the previous very strong El Niño events. The persistent drop in sea-level height occurred in the dry season of the year when sea-level was seasonally at its lowest, so potentially exposed the mangroves to unprecedented hostile conditions. The influence of other key climate factors is also discussed, and a multiple linear regression model is developed to understand the combined role of the important climate variables on the mangrove greenness variation.


2018 ◽  
Author(s):  
Jose R Marin Jarrin ◽  
Pelayo Salinas-de-León

El Niño events heavily influence physical characteristics in the Tropical Eastern Pacific and lead to a decrease in nutrient and phytoplankton concentrations and to variation in the composition of the marine trophic chain. However, El Niño events can also provide an opportunity to evaluate the possible effects climate change may have on marine ecosystems. The Galapagos Marine Reserve coastal fin-fish fishery supports approximately 400 fishers that target species that include benthic/demersal predatory fish such as the endemic Galapagos whitespotted sandbass (Paralabrax albomaculatus), the regional endemic sailfin grouper (Mycteroperca olfax) and mottled scorpion fish (Pontinus clemensi), and the misty grouper (Hyporthodon mystacinus). The first two species are listed as vulnerable and endangered, respectively, on the IUCN red list of threatened species. Despite their potential effects on the biota, at present it is unclear how El Niño events influence artisanal fin-fish fisheries in the Galapagos. To study the impacts of El Niño events on the fishery, numerical percentage catch composition at the largest dock in Santa Cruz Island was recorded during March and April 2013, 2014 and 2016 and compared. Compositions were significantly different between 2016 and both 2013 and 2014, but not between 2013 and 2014. These differences appear to have been due to the appearance of uncommon demersal/benthic predatory fish such as Grape eye seabass (Hemilutjanus macrophthalmos) and Pacific dog snapper (Lutjanus novemfasciatus). Size frequency distributions also varied, with significantly larger sizes of several species observed in 2016 when compared to 2013 or 2014. These changes in catch composition and size may be a product of a reduction in nutrient concentration and primary production that led to an increase in water clarity and decrease in prey biomass that forced these benthic fish species to change their feeding behavior and strike at baits that usually would not be easily detected. Because of the conservative life history many of these benthic predatory fish exhibit and the absence of any form of management for fish species in the GMR, El Niño events may have profound effects on their populations due to the elimination of the largest individuals. Management actions, such as size and catch limits and closures, directed at reducing the impact of the fishery on these important fish populations in the near- (El Niños) and long-term (climate change) future should be encouraged.


2019 ◽  
Vol 38 (1) ◽  
pp. 55
Author(s):  
Yusdar Hilman ◽  
Suciantini Suciantini ◽  
Rini Rosliani

<p>Horticultural products (fruits, vegetables and ornamental crops) which have high competitiveness and added value, require supporting appropriate cultivation technology. The objective of this paper was to sort out adaptive technologies that can be implemented for horticultural cultivation, especially on dry land, to minimize yield loss due to climate changes. Horticultural crops in dry lands faced various problems. Characteristics of horticultural crops, among others were easily damage, bulky, sensitive to water stress and the incidence of pests and diseases. Another issue that has begun to happen in the field is the occurrence of extreme climate change, especially El Nino or La Nina that caused crop failures, damage to agricultural land resources, increased in frequency, extent, and intensity of drought, increased moisture, increased in the susceptibility to pests and the disease. Thus the integrated efforts that are needed in strengthening the capability of dry land to face climate change are by the application of adaptative technology, drafting disaster mitigation concepts, observing climate change, policy analysis related to the application of adaptive technology on climate change. The discussed Horticulture Commodities are focused on economically profitable crops, including: vegetables (potatoes, shallots, chili), fruits (bananas, citrus and melons) and ornamental crops (chrysanthemums, orchids, Polycias and Gerbera) scattered in two zoning zones where namely (i) lowland (0-600 meters above sea level); (ii) highlands (&gt; 600 meters above sea level) and (iii) in both elevations of the site which have wet climates and dry climates. Attempsto be made to promote horticultural crops include performing water-efficient irrigation (drip irrigation), mulching, the use of shading on certain crops, proper fertilization, the use of organic fertilizer, planting system and planting distance, and tolerant varieties. Some adaptative technologies that can be adopted for horticultural crops include (1) developing watersaving irrigation technologies (drip and sprinkler irrigation on shallots), (2) applying healthy crop cultivation (good quality seeds, variety tolerant to disease and sub-optimal environment for tomatoes, red or hot chilli shallots and bananas), (3) using environmentally friendly chemical control (concept of threshold control in red or hot chilli), (4) protecting yield and quality of harvest (the use of silver black mulch on shallots and melons, and the use of shade for ornamental plants on dry land).</p><p>Keywords: Horticulture, climate change, upland, adaptation technology</p><p> </p><p><strong>Abstrak</strong></p><p>Sistem produksi hortikultura (buah buahan, sayuran, dan tanaman hias) yang berdaya saing tinggi dan bernilai tambah memerlukan dukungan teknologi. Tulisan ini merangkum teknologi adaptasi komoditas hortikultura pada lahan kering dalam upaya meminimalisasi tingkat kehilangan hasil akibat perubahan iklim. Usaha tani tanaman hortikultura pada lahan kering dihadapkan pada berbagai masalah, di antaranya tanaman mudah dan cepat rusak, sensitif terhadap cekaman lingkungan, dan rentan terhadap hama dan penyakit. Masalah lain yang berdampak negatif terhadap sistem produksi komoditas hortikultura ialah perubahan iklim ekstrem, terutama el-nino dan la-nina. Perubahan iklim tidak hanya menyebabkan kegagalan panen, tetapi juga merusak sumber daya lahan pertanian, meningkatkan luas areal dan intensitas tanaman yang mengalami kekeringan, meningkatkan kelembaban, dan perkembangan hama dan penyakit tanaman. Oleh karena itu diperlukan integrasi pengelolaan lahan dan aplikasi teknologi adaptif perubahan iklim, penyusunan konsep mitigasi bencana, observasi perubahan iklim, dan analisis kebijakan yang terkait dengan aplikasi teknologi adaptasi terhadap perubahan iklim. Pembahasan difokuskan pada tanaman yang secara ekonomi menguntungkan, antara lain kentang, bawang merah, cabai untuk komoditas sayuran; pisang, jeruk, dan melon untuk komoditas buah-buahan; dan krisan, anggrek, polycias dan gerbera untuk tanaman hias. Komoditas hortikultura tersebut tersebar di dua zonasi ketinggian tempat, yakni dataran rendah (0–600 m dpl) dan dataran tinggi (&gt; 600 m dpl). Beberapa teknologi adaptasi yang dapat diadopsi di antaranya (1) irigasi hemat air (irigasi tetes dan irigasi curah pada bawang merah), (2) budi daya tanaman sehat (benih bermutu, varietas toleran penyakit dan lingkungan suboptimal untuk komoditas kentang, cabai, bawang merah, dan pisang, (3) pengendalian hama dan penyakit ramah lingkungan (konsep ambang pengendalian pada cabai, jeruk), dan (4) perlindungan hasil dan peningkatan kualitas hasil panen (penggunaan mulsa plastik hitam perak pada tanaman bawang merah dan melon, serta penggunaan naungan pada tanaman hias anggrek dan krisan). Kata kunci: hortikultura, perubahan iklim, lahan kering, teknologi adaptasi</p>


2017 ◽  
Vol 36 (2) ◽  
pp. 77 ◽  
Author(s):  
M. Syakir ◽  
E. Surmaini

<p>Coffee is one of the Indonesian largest export commodities and has a strategic role in the economy of nearly two million farmers’ livelihood. The potency of Indonesia’s coffee export is quite high because of its preferred taste, however the trend of national coffee production is only 1-2% per year. On the other hand, the impacts of climate change also threaten the achievement of increased production targets. This paper reviews the impact climate change on coffee production and the adaptation strategies. The main coffee producing regions in Indonesia are Aceh, North Sumatera, South Sumatera, Lampung, Bengkulu, East Java and South Sulawesi Provinces. Most of these regions are vulnerable to climate change. The increasing of extreme climate events such as drought due to El Niño causes a decline in national coffee production to 10%. On the contrary, the longer wet season due to La Niña caused the decreased coffee production to 80%. Indirect impacts due to rising temperatures are increased incidence of coffee borer and leaf rust disease which can lead to a 50% decline on coffee production. Due to rising temperatures, the projected coffee production areas are projected to shift to higher elevations. Numerous adaptive technologies have been intoduced, however adaptive capacaity of farmers are still low. This condition is exacerbated by the limited access of most farmers to climate information, markets, technology, farming credits, and climate risk management information. To overcome the problem, policy makers, stakeholders and farmers have to accelerate the adaptation practices since the climate change has occurred and will continue to happen.</p><p>Keywords: Coffee, climate change, production, adaptation Top of Form</p><p> </p><p><strong>Abstrak</strong></p><p>Kopi merupakan salah satu komoditas ekspor yang berperan strategis dalam perekonomian hampir dua juta rumah petani di Indonesia. Potensi ekspor kopi Indonesia cukup tinggi karena cita rasanya yang disukai, namun tren peningkatan produksi kopi nasional hanya 1-2% per tahun. Di sisi lain, dampak perubahan iklim juga mengancam tercapainya target peningkatan produksi. Makalah ini merupakan tinjauan dampak perubahan iklim terhadap produksi kopi dan strategi adaptasinya di Indonesia. Daerah penghasil utama kopi seperti Aceh, Sumatera Utara, Sumatera Selatan, Lampung, Bengkulu, Jawa Timur dan Sulawesi Selatan rentan terhadap dampak perubahan iklim. Meningkatnya kejadian iklim ekstrim seperti kekeringan akibat El Niño mengakibatkan penurunan produksi kopi 10%. Sebaliknya, musim hujan yang panjang akibat La Niña menurunkan produksi kopi hingga 80%. Dampak tidak langsung perubahan iklim adalah meningkatnya serangan hama penggerek buah kopi dan penyakit karat daun yang menyebabkan penurunan produksi sekitar 50%. Akibat kenaikan suhu, sentra produksi kopi diproyeksikan akan berpindah ke wilayah dengan elevasi yang lebih tinggi. Berbagai teknologi adaptasi telah dihasilkan, namun tingkat adaptasi petani kopi umumnya masih rendah. Kondisi ini diperparah oleh terbatasnya akses sebagian besar petani terhadap informasi iklim, pasar, teknologi, kredit usaha tani, dan informasi pengelolaan risiko iklim. Untuk mengatasi masalah tersebut, pengambil kebijakan, stakeholder, dan petani harus mengakselerasi upaya adaptasi karena perubahan iklim telah terjadi dan akan terus berlangsung.</p><p>Kata kunci: Kopi, perubahan iklim, produksi, adaptasi</p>


2016 ◽  
Vol 28 (1) ◽  
Author(s):  
Tumiar Katarina Manik ◽  
Bustomi Rosadi ◽  
Eva Nurhayati

Global warming which leads to climate change has potential affect to Indonesia agriculture activities and production. Analyzing rainfall pattern and distribution is important to investigate the impact of global climate change to local climate. This study using rainfall data from 1976-2010 from both lowland and upland area of Lampung Province. The results show that rainfall tends to decrease since the 1990s which related to the years with El Nino event. Monsoonal pattern- having rain and dry season- still excist in Lampung; however, since most rain fell below the average, it could not meet crops water need. Farmers conclude that dry seasons were longer and seasonal pattern has been changed. Global climate change might affect Lampung rainfall distribution through changes on sea surface temperature which could intensify the El Nino effect. Therefore, watching the El Nino phenomena and how global warming affects it, is important in predicting local climate especially the rainfall distribution in order to prevent significant loss in agriculture productivities.


2018 ◽  
Author(s):  
Jose R Marin Jarrin ◽  
Pelayo Salinas-de-León

El Niño events heavily influence physical characteristics in the Tropical Eastern Pacific and lead to a decrease in nutrient and phytoplankton concentrations and to variation in the composition of the marine trophic chain. However, El Niño events can also provide an opportunity to evaluate the possible effects climate change may have on marine ecosystems. The Galapagos Marine Reserve coastal fin-fish fishery supports approximately 400 fishers that target species that include benthic/demersal predatory fish such as the endemic Galapagos whitespotted sandbass (Paralabrax albomaculatus), the regional endemic sailfin grouper (Mycteroperca olfax) and mottled scorpion fish (Pontinus clemensi), and the misty grouper (Hyporthodon mystacinus). The first two species are listed as vulnerable and endangered, respectively, on the IUCN red list of threatened species. Despite their potential effects on the biota, at present it is unclear how El Niño events influence artisanal fin-fish fisheries in the Galapagos. To study the impacts of El Niño events on the fishery, numerical percentage catch composition at the largest dock in Santa Cruz Island was recorded during March and April 2013, 2014 and 2016 and compared. Compositions were significantly different between 2016 and both 2013 and 2014, but not between 2013 and 2014. These differences appear to have been due to the appearance of uncommon demersal/benthic predatory fish such as Grape eye seabass (Hemilutjanus macrophthalmos) and Pacific dog snapper (Lutjanus novemfasciatus). Size frequency distributions also varied, with significantly larger sizes of several species observed in 2016 when compared to 2013 or 2014. These changes in catch composition and size may be a product of a reduction in nutrient concentration and primary production that led to an increase in water clarity and decrease in prey biomass that forced these benthic fish species to change their feeding behavior and strike at baits that usually would not be easily detected. Because of the conservative life history many of these benthic predatory fish exhibit and the absence of any form of management for fish species in the GMR, El Niño events may have profound effects on their populations due to the elimination of the largest individuals. Management actions, such as size and catch limits and closures, directed at reducing the impact of the fishery on these important fish populations in the near- (El Niños) and long-term (climate change) future should be encouraged.


2021 ◽  
Vol 892 (1) ◽  
pp. 012057
Author(s):  
D Firda ◽  
W Estiningtyas

Abstract Climate change has had a significant impact on the agricultural sector and the impact is different in each place due to spatial variations in Indonesia. One of the efforts that must be made to reduce risk is to adapt. The purpose of this paper is to determine the key locations and their relationship to rice production for adaptation to climate change. Rainfall data and Oceanic Nino Index (ONI) are used to see the relationship between these two parameters through regression analysis and significance in El Niño and La Niña conditions. In El Niño conditions 24 key locations were obtained and in La Niña 3 priority locations. From the selected key locations, regression analysis was performed to determine the relationship between rainfall and rice production. The regression results at the sample locations show a fairly high R2 value, namely 0.4 to 0.9, namely in Juntinyuat (West Java), Palasari (Bali), and Detusoko (East Nusa Tenggara). Other key locations are also found in several provinces. This key location is a priority location where the rainfall is strongly influenced by the extreme climate phenomenon El Niño and La Niña so that it can be used to assess the impact and monitor its impact on food farming. Socialization of the use of climate information to extension workers and farmers will greatly help reduce risks and increase capacity to adapt to climate change.


Sign in / Sign up

Export Citation Format

Share Document