scholarly journals How Good Is the STW Sensor? An Account from a Larger Shipping Company

2021 ◽  
Vol 9 (5) ◽  
pp. 465
Author(s):  
Angelos Ikonomakis ◽  
Ulrik Dam Nielsen ◽  
Klaus Kähler Holst ◽  
Jesper Dietz ◽  
Roberto Galeazzi

This paper examines the statistical properties and the quality of the speed through water (STW) measurement based on data extracted from almost 200 container ships of Maersk Line’s fleet for 3 years of operation. The analysis uses high-frequency sensor data along with additional data sources derived from external providers. The interest of the study has its background in the accuracy of STW measurement as the most important parameter in the assessment of a ship’s performance analysis. The paper contains a thorough analysis of the measurements assumed to be related with the STW error, along with a descriptive decomposition of the main variables by sea region including sea state, vessel class, vessel IMO number and manufacturer of the speed-log installed in each ship. The paper suggests a semi-empirical method using a threshold to identify potential error in a ship’s STW measurement. The study revealed that the sea region is the most influential factor for the STW accuracy and that 26% of the ships of the dataset’s fleet warrant further investigation.

Inland Waters ◽  
2015 ◽  
Vol 5 (1) ◽  
pp. 49-56 ◽  
Author(s):  
David Hamilton ◽  
Cayelan Carey ◽  
Lauri Arvola ◽  
Peter Arzberger ◽  
Carol Brewer ◽  
...  

2021 ◽  
pp. 545-556
Author(s):  
I. Amihai ◽  
R. Gitzel ◽  
A. Boyaci

Author(s):  
S. R. Rakhmanov

In some cases, the processes of piercing or expanding pipe blanks involve the use of high-frequency active vibrations. However, due to insufficient knowledge, these processes are not widely used in the practice of seamless pipes production. In particular, the problems of increasing the efficiency of the processes of piercing or expanding a pipe blank at a piercing press using high-frequency vibrations are being solved without proper research and, as a rule, by experiments. The elaboration of modern technological processes for the production of seamless pipes using high-frequency vibrations is directly related to the choice of rational modes of metal deformation and the prediction resistance indicators of technological tools and the reliability of equipment operation. The creation of a mathematical model of the process of vibrating piercing (expansion) of an axisymmetric pipe blank at a piercing press of a pipe press facility is an actual task. A calculation scheme for the process of piercing a pipe plank has been elaborated. A dependence was obtained characterizing the speed of front of plastic deformation propagation on the speed of penetration of a vibrated axisymmetric mandrel into the pipe workpiece being pierced. The dynamic characteristics of the occurrence of wave phenomena in the metal being pierced under the influence of a vibrated tool have been determined, which significantly complements the previously known ideas about the stress-strain state of the metal in the deformation zone. The deformation fields in the zones of the disturbed region of the deformation zone were established, taking into account the high-frequency vibrations of the technological tool. It has been established that the choice of rational parameters (amplitude-frequency characteristics) of the vibration piercing process of a pipe blank results in significant increase in the efficiency of the process, the durability of the technological tool and the quality of the pierced blanks.


1998 ◽  
Vol 2 ◽  
pp. 115-122
Author(s):  
Donatas Švitra ◽  
Jolanta Janutėnienė

In the practice of processing of metals by cutting it is necessary to overcome the vibration of the cutting tool, the processed detail and units of the machine tool. These vibrations in many cases are an obstacle to increase the productivity and quality of treatment of details on metal-cutting machine tools. Vibration at cutting of metals is a very diverse phenomenon due to both it’s nature and the form of oscillatory motion. The most general classification of vibrations at cutting is a division them into forced vibration and autovibrations. The most difficult to remove and poorly investigated are the autovibrations, i.e. vibrations arising at the absence of external periodic forces. The autovibrations, stipulated by the process of cutting on metalcutting machine are of two types: the low-frequency autovibrations and high-frequency autovibrations. When the low-frequency autovibration there appear, the cutting process ought to be terminated and the cause of the vibrations eliminated. Otherwise, there is a danger of a break of both machine and tool. In the case of high-frequency vibration the machine operates apparently quiently, but the processed surface feature small-sized roughness. The frequency of autovibrations can reach 5000 Hz and more.


2020 ◽  
Author(s):  
Kenneth Lucas ◽  
George Barnes

We present the results of direct dynamics simulations and DFT calculations aimed at elucidating the effect of \textit{O}-sulfonation on the collision induced dissociation for serine. Towards this end, direct dynamics simulations of both serine and sulfoserine were performed at multiple collision energies and theoretical mass spectra obtained. Comparisons to experimental results are favorable for both systems. Peaks related to the sulfo group are identified and the reaction dynamics explored. In particular, three significant peaks (m\z 106, 88, and 81) seen in the theoretical mass spectrum directly related to the sulfo group are analyzed as well as major peaks shared by both systems. Our analysis shows that the m\z 106 peaks result from intramolecular rearrangements, intermolecular proton transfer among complexes composed of initial fragmentation products, and at high energy side-chain fragmentation. The \mz 88 peak was found to contain multiple constitutional isomers, including a previously unconsidered, low energy structure. It was also seen that the RM1 semi empirical method was not able to obtain all of the major peaks seen in experiment for sulfoserine. In contrast, PM6 did obtain all major experimental peaks.


Sign in / Sign up

Export Citation Format

Share Document