scholarly journals COLREGs Compliant Fuzzy-Based Collision Avoidance System for Multiple Ship Encounters

2021 ◽  
Vol 9 (8) ◽  
pp. 790
Author(s):  
Yaseen Adnan Ahmed ◽  
Mohammed Abdul Hannan ◽  
Mahmoud Yasser Oraby ◽  
Adi Maimun

As the number of ships for marine transportation increases with the advancement of global trade, encountering multiple ships in marine traffic becomes common. This situation raises the risk of collision of the ships; hence, this paper proposes a novel Fuzzy-logic based intelligent conflict detection and resolution algorithm, where the collision courses and possible avoiding actions are analysed by considering ship motion dynamics and the input and output fuzzy membership functions are derived. As a conflict detection module, the Collision Risk (CR) is measured for each ship by using a scaled nondimensional Distance to the Closest Point of Approach (DCPA) and Time to the Closest Point of Approach (TCPA) as inputs. Afterwards, the decisions for collision avoidance are made based on the calculated CR, encountering angle and relative angle of each ship measured from others. In this regard, the rules for the Fuzzy interface system are defined in accordance with the COLREGs, and the whole system is implemented on the MATLAB Simulink platform. In addition, to deal with the multiple ship encounters, the paper proposes a unique maximum-course and minimum-speed change approach for decision making, which has been found to be efficient to solve Imazu problems, and other complicated multiple-ship encounters.

Author(s):  
Yaseen Adnan Ahmed ◽  
Mohammed Abdul Hannan ◽  
Mahmoud Yasser Oraby ◽  
Adi Maimun

As the number of ships for marine transportation increases with the advancement of global trade, encountering multiple ships in marine traffic becomes common. This situation raises the risk of collision of the ships; hence this paper proposes a novel Fuzzy-logic based intelligent conflict detection and resolution algorithm, where the collision courses and possible avoiding actions are analyzed by considering ship motion dynamics and the input and output fuzzy membership functions are derived. As a conflict detection module, the Collision Risk (CR) is measured for each ship by using a scaled nondimensional Distance to the Closest Point of Approach (DCPA) and Time to the Closest Point of Approach (TCPA) as inputs. Afterwards, the decisions for collision avoidance are made based on the calculated CR, encountering angle and relative angle of each ship measured from others. In this regard, the rules for the Fuzzy interface system are defined in accordance with the COLREGs, and the whole system is implemented on the MATLAB Simulink platform. In addition, to deal with the multiple ship encounters, the paper proposes a unique maximum-course and minimum-speed change approach for decision making, which has been found to be efficient to solve Imazu problems, and other complicated multiple-ship encounters.


Symmetry ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 985
Author(s):  
Xi Chen ◽  
Yu Wan ◽  
Songyang Lao

The Traffic Alert and Collision Avoidance System (TCAS) is recognized worldwide as the last resort for avoiding midair collisions. The existing TCAS can solve pairwise conflict effectively, but cannot manage multi-aircraft conflict satisfactorily, and more seriously, can even trigger domino conflicts in some situation. In response to the increasingly frequent multi-aircraft conflicts, especially three-aircraft conflicts, it is necessary to improve the ability of TCAS. This paper studies the collision avoidance of multi-aircraft scenarios and innovatively proposes a collaborative optimization of a collision avoidance system (CAS) based on the state prediction of the aircraft. In the process, not only invading aircraft but also potential invading aircraft are considered in the plan for an optimal conflict resolution program. From the perspective of mathematics, the collaborative multi-aircraft conflict detection and resolution algorithm is described in detail in this paper. In the end, this paper conducts a comparative experiment to prove the feasibility of the algorithm in three-aircraft scenarios using InCAS software and Gmas simulation software based on graphical modeling of complex systems. The experimental results show that the CAS proposed in this paper can efficiently prevent the occurrence of domino conflicts and guide each aircraft to avoid conflict areas and return to their origin trajectories. In contrast, the existing TCAS will cause the target aircraft to intensify the conflict with the potential invading aircraft when avoiding intruder aircraft. The research greatly remedies the gaps in the area of multi-aircraft collision avoidance and greatly improves the ability and efficiency of TCAS.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Qingyang Xu ◽  
Chuang Zhang ◽  
Ning Wang

The vessel collision accidents cause a great loss of lives and property. In order to reduce the human fault and greatly improve the safety of marine traffic, collision avoidance strategy optimization is proposed to achieve this. In the paper, a multiobjective optimization algorithm NSGA-II is adopted to search for the optimal collision avoidance strategy considering the safety as well as economy elements of collision avoidance. Ship domain and Arena are used to evaluate the collision risk in the simulation. Based on the optimization, an optimal rudder angle is recommended to navigator for collision avoidance. In the simulation example, a crossing encounter situation is simulated, and the NSGA-II searches for the optimal collision avoidance operation under the Convention on the International Regulations for Preventing Collisions at Sea (COLREGS). The simulation studies exhibit the validity of the method.


2011 ◽  
Vol 243-249 ◽  
pp. 4435-4440 ◽  
Author(s):  
Zhong Liang Sun ◽  
Xiao Kan Wang ◽  
Shou Xiang Zai

The present rear-end collision accident proportion on the road increases day after day, car collision avoidance system is more and more paid attention. Analysising the existing car collision avoidance system, we propose a car anti-collision algorithm based on safe distance model in this paper. This method takes the influence factors of safety distance for main parameters which fully considers the speed change and the acceleration change of the car 1 and the car 2. It may realize real-time information acquisition and warning judgment according to the state of car 2, the car could automatic braking if necessary. VB simulation shows that the algorithm can effectively avoid collision, also automatically maintain the distance between vehicles, and lay a foundation for further research on the unmanned car.


1974 ◽  
Vol 27 (4) ◽  
pp. 496-509
Author(s):  
K. Hara

A basic concept for estimating the probability of collision for a ship navigating through a seaway with congested marine traffic can be derived by applying queuing theory to the relation between collision avoidance manœuvres and the traffic environment. Ships usually perform various ‘services’, such as altering course or collision avoidance, to other ships and geographical obstacles; the analogy of the collision avoidance system to queuing is that each arrival of another ship represents a ‘customer’ and each manœuvre of own ship corresponds to a ‘service’. A model for a collision-avoidance system was constructed analytically from queuing theory and expressed numerically, under assumptions based on traffic surveys and the statistical analysis of collision avoidance procedures at sea, in order to study the feasibilities of the model.


2009 ◽  
Vol 62 (4) ◽  
pp. 643-655 ◽  
Author(s):  
Ning Wang ◽  
Xianyao Meng ◽  
Qingyang Xu ◽  
Zuwen Wang

Most of the existing typical ship domains have been comprehensively reviewed and classified. Most of these ship domains are described in a geometrical manner that is difficult to apply to practices and simulations in marine traffic engineering. According to different types of geometrical ship domains, we have proposed mathematical models, based on which a unified analytical framework has been established. It is feasible and practical for the analytical models to be applied to the assessment of navigational safety, collision avoidance and trajectory planning, etc. Finally, some computer simulations and comparative studies of the proposed domain model have been presented and the simulation results show that the uniform analytical framework for ship domains is effective and identical to the original geometrical ones. It should be noted that the analytical domain models could be directly applied in any collision risk, collision avoidance or VTS system while the geometrical ones would be more illustrative but less practical or analytical.


Author(s):  
J Leonard ◽  
A Savvaris ◽  
A Tsourdos

The large-scale of unmanned aerial vehicle applications has escalated significantly within the last few years, and the current research is slowly hinting at a move from single vehicle applications to multivehicle systems. As the number of agents operating in the same environment grows, conflict detection and resolution becomes one of the most important factors of the autonomous system to ensure the vehicles’ safety throughout the completion of their missions. The work presented in this paper describes the implementation of the novel distributed reactive collision avoidance algorithm proposed in the literature, improved to fit a swarm of quadrotor helicopters. The original method has been extended to function in dense and crowded environments with relevant spatial obstacle constraints and deconfliction manoeuvres for high number of vehicles. Additionally, the collision avoidance is modified to work in conjunction with a dynamic close formation flight scheme. The solution presented to the conflict detection and Resolution problem is reactive and distributed, making it well suited for real-time applications. The final avoidance algorithm is tested on a series of crowded scenarios to test its performances in close quarters.


2005 ◽  
Vol 58 (3) ◽  
pp. 389-404 ◽  
Author(s):  
Peter Brooker

The focus here is on the performance of and interaction between the Traffic Alert and Collision Avoidance System (TCAS) and the controller's short-term conflict alert (STCA) system. The data source used is UK Airprox Board Reports of close encounters between aircraft, and the focus is on commercial air transport aircraft using UK controlled airspace with a radar service. Do the systems work well together? Are controllers surprised when they find out that a pilot has received a TCAS resolution advisory? What do TCAS and STCA events say about collision risk? Generally, the systems seem to work together well. On most occasions, controllers are not surprised by TCAS advisories: either they have detected the problem themselves or STCA has alerted them to it. The statistically expected rate of future mid-air collisions is estimated by extrapolation of Airprox closest encounter distances.


Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Y. J. Zhang ◽  
F. Du ◽  
J. Wang ◽  
L. S. Ke ◽  
M. Wang ◽  
...  

Aiming at the requirements of vehicle safety collision avoidance system, a safety collision avoidance algorithm based on environmental characteristics and driver characteristics is proposed. By analyzing the relationship between collision avoidance time and the environment, a safety time model is established. In the established safety time model, parameters based on driver characteristics are added, which increases the flexibility of the algorithm. The algorithm can adapt to more different driving conditions and give appropriate warning thresholds. After simulation and comparison with other algorithms, the algorithm proposed in this paper can satisfied the requirements of reducing vehicle collision risk. The effectiveness and feasibility of the algorithm are verified, and the safety of vehicle driving can be improved.


Sign in / Sign up

Export Citation Format

Share Document