scholarly journals Organic Matter Redox State Driven by Specific Sources in Mangrove Sediments: A Case Study from Peruvian Ecosystems

2021 ◽  
Vol 9 (12) ◽  
pp. 1438
Author(s):  
Alexander Pérez ◽  
Gerardo Cebrián-Torrejón ◽  
Noemí Montoya ◽  
Joan Piquero-Cilla ◽  
Christian J. Sanders ◽  
...  

In order to determine the organic matter redox state in relation to specific sources in mangrove sediments, two 60 cm-long sediment cores were collected from mangrove-covered and mudflat zones within a mangrove forest in Peru. Sediment subsamples from these cores were analyzed to determine δ13C values and C:N ratios, whereas two redox indices, namely, electrochemical (fEAOM) and spectroscopical (A1650/A3400) indices, were taken from a previous study and correlated with the geochemical indices obtained from this work. These indices may provide accurate information on sedimentary organic matter diagenesis by oxidative processes through its redox state. The results show that the electrochemical index (fEAOM) and the spectroscopical index (A1650/A3400) for mangrove-covered sediments exhibited a positive correlation with δ13C values and a negative correlation with C:N molar ratios. These correlations suggest that the more labile sedimentary organic matter derived from non-terrestrial sources is in a more oxidized state than that derived from mangrove vegetation. However, this was not valid for mudflat zones, where non-significant correlations between geochemical indices were observed. Furthermore, the results suggest that the redox state of the organic matter deposited over time is dependent on source mixing influences, being better preserved in the presence of mangrove-derived organic matter.

2015 ◽  
Vol 12 (6) ◽  
pp. 1781-1797 ◽  
Author(s):  
R. M. Jeffreys ◽  
E. H. Fisher ◽  
A. J. Gooday ◽  
K. E. Larkin ◽  
D. S. M. Billett ◽  
...  

Abstract. The Arabian Sea is a region of elevated productivity with the highest globally recorded fluxes of particulate organic matter (POM) to the deep ocean, providing an abundant food source for fauna at the seafloor. However, benthic communities are also strongly influenced by an intense oxygen minimum zone (OMZ), which impinges on the continental slope from 100 to 1000 m water depth. We compared the trophic ecology of foraminifera on the Oman and Pakistan margins of the Arabian Sea (140–3185 m water depth). These two margins are contrasting both in terms of the abundance of sedimentary organic matter and the intensity of the OMZ. Organic carbon concentrations of surficial sediments were higher on the Oman margin (3.32 ± 1.4%) compared to the Pakistan margin (2.45 ± 1.1%) and sedimentary organic matter (SOM) quality estimated from the Hydrogen Index was also higher on the Oman margin (300–400 mg HC mg TOC−1) compared to the Pakistan margin (< 250 mg HC mg TOC−1). The δ13C and δ15N values of sediments were similar on both margins (−20 and 8‰, respectively). Stable isotope analysis (SIA) showed that foraminiferal cells had a wide range of δ13C values (−25.5 to −11.5‰), implying that they utilise multiple food sources; indeed δ13C values varied between depths, foraminiferal types and between the two margins. Foraminifera had broad ranges in δ15N values (−7.8 to 27.3‰). The enriched values suggest that some species may store nitrate to utilise in respiration; this was most notable on the Pakistan margin. Depleted foraminiferal δ15N values, particularly at the Oman margin, may reflect feeding on chemosynthetic bacteria. We suggest that differences in productivity regimes may be responsible for the differences observed in foraminiferal isotopic composition. In addition, at the time of sampling, whole jellyfish carcasses (Crambionella orsini) and a carpet of jelly detritus were observed across the Oman margin transect. Associated chemosynthetic bacteria may have provided an organic-rich food source for foraminifera at these sites. Our data suggest that foraminifera in OMZ settings can utilise a variety of food sources and metabolic pathways to meet their energetic demands.


1989 ◽  
Vol 24 (1) ◽  
pp. 1-22 ◽  
Author(s):  
Alena Mudroch ◽  
K. Hill

Abstract Sediment cores were collected in Lake St. Clair in 1985 and in the St. Clair River in 1986 to investigate the horizontal and vertical distribution and association of Hg in the sediments. A layer of recent sediment up to about 35 cm thick was differentiated by the geochemical composition and visual appearance from the underlying glacial-lacustrine deposits. The concentration of Hg in the surficial sediments in Lake St. Clair was lower in 1985 (&lt;0.025 to 1.200 µg/g) than that found in 1974 (&lt;0.20 to 3.00 µg/g). Up to 8.30 µg/g of Hg were found in the sediments collected from the nearshore area at Sarnia, Ontario, in the St. Clair River in 1986. The concentrations of Hg ranged from 5.05 to 16.00 µg/g in different sand-sized fractions (0.063 to 0.350 mm) of the sediment. The concentration of Hg was 17.80 µg/g in the silt-clay size fraction (&lt;0.063 mm). No relationship was found between the concentration of organic matter and Hg, and the concentration of silica and Hg in the St. Clair River sediments. The results indicated a relationship of Hg with particles of different mineralogical composition. Up to 3.72 µg/g Hg was found in the surface sediment in Chenal Ecarte. The greatest concentration of Hg (13.15 µg/g) existed in the 0.350 mm particle size fraction, which consisted mainly of small pieces of decaying wood. A good relationship was found between the concentration of Hg and organic matter in the sediment at this area.


2021 ◽  
Vol 230 ◽  
pp. 103931
Author(s):  
Jin-E Wei ◽  
Yan Chen ◽  
Jian Wang ◽  
Shi-Bo Yan ◽  
Hong-Hai Zhang ◽  
...  

Geofluids ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-14 ◽  
Author(s):  
Ming Wen ◽  
Zhenxue Jiang ◽  
Kun Zhang ◽  
Yan Song ◽  
Shu Jiang ◽  
...  

The upper Ordovician-lower Silurian shale has always been the main target of marine shale gas exploration in southern China. However, the shale gas content varies greatly across different regions. The organic matter content is one of the most important factors in determining gas content; therefore, determining the enrichment mechanisms of organic matter is an important problem that needs to be solved urgently. In this paper, upper Ordovician-lower Silurian shale samples from the X-1 and Y-1 wells that are located in the southern Sichuan area of the upper Yangtze region and the northwestern Jiangxi area of the lower Yangtze region, respectively, are selected for analysis. Based on the core sample description, well logging data analysis, mineral and elemental composition analysis, silicon isotope analysis, and TOC (total organic carbon) content analysis, the upper Ordovician-lower Silurian shale is studied to quantitatively calculate its content of excess silicon. Subsequently, the results of elemental analysis and silicon isotope analysis are used to determine the origin of excess silicon. Finally, we used U/Th to determine the characteristics of the redox environment and the relationship between excess barium and TOC content to judge paleoproductivity and further studied the mechanism underlying sedimentary organic matter enrichment in the study area. The results show that the excess silicon from the upper Ordovician-lower Silurian shale in the upper Yangtze area is derived from biogenesis. The sedimentary water body is divided into an oxygen-rich upper water layer that has higher paleoproductivity and a strongly reducing lower water that is conducive to the preservation of sedimentary organic matter. Thus, for the upper Ordovician-lower Silurian shale in the upper Yangtze region, exploration should be conducted in the center of the blocks with high TOC contents and strongly reducing water body. However, the excess silicon in the upper Ordovician-lower Silurian shale of the lower Yangtze area originates from hydrothermal activity that can enhance the reducibility of the bottom water and carry nutrients from the crust to improve paleoproductivity and enrich sedimentary organic matter. Therefore, for the upper Ordovician-lower Silurian shale in the lower Yangtze region, exploration should be conducted in the blocks near the junction of the two plates where hydrothermal activity was active.


1996 ◽  
Vol 41 (3) ◽  
pp. 488-497 ◽  
Author(s):  
S. Peulvé ◽  
M.-A. Sicre ◽  
A. Saliot ◽  
J. W. De Leeuw ◽  
M. Baas

2017 ◽  
Vol 68 (9) ◽  
pp. 1704 ◽  
Author(s):  
Leandro Bergamino ◽  
Mark Schuerch ◽  
Adriana Tudurí ◽  
Silvina Carretero ◽  
Felipe García-Rodríguez

We investigated carbon isotopic ratios (δ13C) v. carbon to nitrogen (C : N) ratios for surface sediments throughout a large estuarine system (Río de la Plata, RdlP), combined with sediment cores from adjacent marshes to infer main carbon sources. We also evaluated the influence of the El Niño–Southern Oscillation (ENSO) and associated high freshwater-discharge events on the organic-matter transport within the estuary. The isotopic pattern in surface sediments of the RdlP showed the upper reaches to be influenced by riverine particulate matter (δ13C range: –24 to –26‰). Similarly, in the sediment cores from marshes of the upper reaches, δ13C values decreased from –24‰ in ancient sediments to –28‰ in recent sediments, reflecting an increased contribution of organic matter from land, including C3 plants and freshwater phytoplankton, during the past 50 years. However, the lower reaches represent a depositional environment of marine algae (δ13C range: –21 to –23‰), with no influence of detritus from adjacent marshes, indicating minor erosion of the marshes in the lower reaches operating as carbon-sink habitats. Our isotopic analysis showed that the transport and deposition of terrigenous organic matter within the RdlP and adjacent marsh habitat appear to be both temporally and spatially linked to hydrology patterns.


Sign in / Sign up

Export Citation Format

Share Document