scholarly journals Yeast Plasma Membrane Fungal Oligopeptide Transporters Display Distinct Substrate Preferences despite Their High Sequence Identity

2021 ◽  
Vol 7 (11) ◽  
pp. 963
Author(s):  
Carmen Becerra-Rodríguez ◽  
Géraldine Taghouti ◽  
Perrine Portier ◽  
Sylvie Dequin ◽  
Margarida Casal ◽  
...  

Fungal Oligopeptide Transporters (Fot) Fot1, Fot2 and Fot3 have been found in Saccharomyces cerevisiae wine strains, but not in strains from other environments. In the S. cerevisiae wine strain EC1118, Fot1 and Fot2 are responsible for a broader range of oligopeptide utilization in comparison with strains not containing any Fot. This leads to better fermentation efficiency and an increased production of desirable organoleptic compounds in wine. Despite the benefits associated with Fot activity in S. cerevisiae within the wine environment, little is known about this family of transporters in yeast. The presence of Fot1, Fot2 and Fot3 in S. cerevisiae wine strains is due to horizontal gene transfer from the yeast Torulaspora microellipsoides, which harbors Fot2Tm, FotX and FotY proteins. Sequence analyses revealed that Fot family members have a high sequence identity in these yeast species. In this work, we aimed to further characterize the different Fot family members in terms of subcellular localization, gene expression in enological fermentation and substrate specificity. Using CRISPR/Cas9, we constructed S. cerevisiae wine strains containing each different Fot as the sole oligopeptide transporter to analyze their oligopeptide preferences by phenotype microarrays. The results of oligopeptide consumption show that Fot counterparts have different di-/tripeptide specificities, suggesting that punctual sequence divergence between FOT genes can be crucial for substrate recognition, binding and transport activity. FOT gene expression levels in different S. cerevisiae wine strains during enological fermentation, together with predicted binding motifs for transcriptional regulators in nitrogen metabolism, indicate that these transporters may be under the control of the Nitrogen Catabolite Repression (NCR) system. Finally, we demonstrated that Fot1 is located in the yeast plasma membrane. This work contributes to a better understanding of this family of oligopeptide transporters, which have demonstrated a key role in the utilization of oligopeptides by S. cerevisiae in enological fermentation.

2021 ◽  
Vol 9 (6) ◽  
pp. e002549
Author(s):  
Hiroyuki Katayama ◽  
Makoto Kobayashi ◽  
Ehsan Irajizad ◽  
Alejandro Sevillarno ◽  
Nikul Patel ◽  
...  

BackgroundCitrulline post-translational modification of proteins is mediated by protein arginine deiminase (PADI) family members and has been associated with autoimmune diseases. The role of PADI-citrullinome in immune response in cancer has not been evaluated. We hypothesized that PADI-mediated citrullinome is a source of neoantigens in cancer that induces immune response.MethodsProtein expression of PADI family members was evaluated in 196 cancer cell lines by means of indepth proteomic profiling. Gene expression was assessed using messenger RNA data sets from The Cancer Genome Atlas. Immunohistochemical analysis of PADI2 and peptidyl-citrulline was performed using breast cancer tissue sections. Citrullinated 12–34-mer peptides in the putative Major Histocompatibility Complex-II (MHC-II) binding range were profiled in breast cancer cell lines to investigate the relationship between protein citrullination and antigen presentation. We further evaluated immunoglobulin-bound citrullinome by mass spectrometry using 156 patients with breast cancer and 113 cancer-free controls.ResultsProteomic and gene expression analyses revealed PADI2 to be highly expressed in several cancer types including breast cancer. Immunohistochemical analysis of 422 breast tumor tissues revealed increased expression of PADI2 in ER− tumors (p<0.0001); PADI2 protein expression was positively correlated (p<0.0001) with peptidyl-citrulline staining. PADI2 expression exhibited strong positive correlations with a B cell immune signature and with MHC-II-bound citrullinated peptides. Increased circulating citrullinated antigen–antibody complexes occurred among newly diagnosed breast cancer cases relative to controls (p=0.0012).ConclusionsAn immune response associated with citrullinome is a rich source of neoantigens in breast cancer with a potential for diagnostic and therapeutic applications.


1991 ◽  
Vol 266 (4) ◽  
pp. 2520-2525 ◽  
Author(s):  
T H Kuo ◽  
K K Wang ◽  
L Carlock ◽  
C Diglio ◽  
W Tsang

Biochemistry ◽  
2005 ◽  
Vol 44 (50) ◽  
pp. 16624-16632 ◽  
Author(s):  
Silvia Lecchi ◽  
Kenneth E. Allen ◽  
Juan Pablo Pardo ◽  
A. Brett Mason ◽  
Carolyn W. Slayman

2004 ◽  
Vol 399 (1-6) ◽  
pp. 371-373
Author(s):  
D. I. Bondarenko ◽  
D. A. Aliverdieva ◽  
D. V. Mamaev ◽  
K. F. Shol’ts

Sign in / Sign up

Export Citation Format

Share Document