scholarly journals Vegetation Degradation of Guanshan Grassland Suppresses the Microbial Biomass and Activity of Soil

Land ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 203
Author(s):  
Yanmei Liu ◽  
Hangyu Yang ◽  
Zisheng Xing ◽  
Yali Zou ◽  
Zheming Cui

Changes in vegetation influence the function of grassland ecosystems. A degradation of the vegetation type has been found from high to low altitudes in Guanshan grassland in the order of forest grassland (FG) < shrub grassland (SG) < herb grassland (HG). However, there is poor information regarding the effect of vegetation degradation on soil microbes in Guanshan grassland. Therefore, our study evaluated the impact of vegetation degradation on the microbial parameters of soil, as well as the mechanisms responsible for these variations. Soils were sampled from 0 to 30 cm under the FG, SG, and HG in Guanshan grassland for determining the microbial biomass, enzymatic activities, basal respiration (BR), and metabolic quotient (qCO2) in April and July 2017. The results showed that vegetation types are important factors that obviously influence the above-mentioned soil microbial properties. The FG and SG had significantly higher soil microbial biomass, enzymatic activities, and BR than those of the HG, but markedly lower qCO2 (p < 0.05). Soil pH, available nitrogen (AN), organic carbon (SOC), total phosphorus (TP), available P (AP), and total N (TN) were key factors in the decline in the soil microbial biomass and microbial activities of the degraded vegetation. Moreover, slope aspects also affected the soil microbial properties, with the east slope having higher soil microbial biomass, enzymatic activities, and BR and lower qCO2 than the west slope. Conclusively, vegetation degradation has led to a decline in the soil microbial biomass and microbial activities, indicating the degradation of the Guanshan grassland ecosystem.

Soil Research ◽  
2011 ◽  
Vol 49 (4) ◽  
pp. 287 ◽  
Author(s):  
V. Gonzalez-Quiñones ◽  
E. A. Stockdale ◽  
N. C. Banning ◽  
F. C. Hoyle ◽  
Y. Sawada ◽  
...  

Since 1970, measurement of the soil microbial biomass (SMB) has been widely adopted as a relatively simple means of assessing the impact of environmental and anthropogenic change on soil microorganisms. The SMB is living and dynamic, and its activity is responsible for the regulation of organic matter transformations and associated energy and nutrient cycling in soil. At a gross level, an increase in SMB is considered beneficial, while a decline in SMB may be considered detrimental if this leads to a decline in biological function. However, absolute SMB values are more difficult to interpret. Target or reference values of SMB are needed for soil quality assessments and to allow ameliorative action to be taken at an appropriate time. However, critical values have not yet been successfully identified for SMB. This paper provides a conceptual framework which outlines how SMB values could be interpreted and measured, with examples provided within an Australian context.


2017 ◽  
Vol 50 (1) ◽  
pp. 57-63 ◽  
Author(s):  
L. M. Polyanskaya ◽  
A. L. Stepanov ◽  
K. V. Chakmazyan

2013 ◽  
Vol 43 (9) ◽  
pp. 777-784 ◽  
Author(s):  
Ya-Lin Hu ◽  
Kangho Jung ◽  
De-Hui Zeng ◽  
Scott X. Chang

Chronic nitrogen (N) and (or) sulfur (S) deposition to boreal forests in the Athabasca oil sands region (AOSR) in Alberta, Canada, has been caused by oil sands mining and extraction/upgrading activities. It is important that we understand the response of microbial community function to chronic N and S deposition as microbial populations mediate soil carbon (C) and N cycles and affect ecosystem resilience. To evaluate the impact of N and (or) S deposition on soil microbial community functions, we conducted a simulated N and S deposition experiment in a boreal mixedwood forest with the following four treatments: control (CK), N addition (+N, 30 kg N·ha−1 as NH4NO3), S addition (+S, 30 kg S·ha−1 as NaSO4), and N plus S addition (+NS, 30 kg N·ha−1 + 30 kg S·ha−1), from 2006 to 2010. Nitrogen and (or) S deposition did not change soil organic carbon, total N, dissolved organic C and N, or soil microbial biomass C and N. Soil microbial community-level physiological profiles, however, were strongly affected by 5 years of N and (or) S addition. Soil β-glucosidase activity in the +NS treatment was greater than that in the +S treatment, and S addition decreased soil arylsulfatase; however, urease and dehydrogenase activities were not affected by the simulated N and (or) S deposition. Our data suggested that N and (or) S deposition strongly affected soil microbial community functions and enzymatic activities without changing soil microbial biomass in the studied boreal forest.


Agronomy ◽  
2018 ◽  
Vol 8 (11) ◽  
pp. 255 ◽  
Author(s):  
Muhammad Azlan Halmi ◽  
Siti Hasenan ◽  
Khanom Simarani ◽  
Rosazlin Abdullah

Soil microbial properties are frequently used as indicators of soil fertility. However, the linkage of these properties with crop biomass is poorly documented especially in biochar amended soil with high carbon:nitrogen (C:N). A short-term field trial was conducted to observe the growth response of maize to biochar treatment in a highly weathered Ultisol of humid tropics and to observe the possible linkage of the measured microbial properties with maize biomass. Soil microbial biomass (carbon (C), nitrogen (N), phosphorus (P)), enzyme activity (β-glucosidase, urease, phosphodiesterase) and gene abundance (bacterial 16S rRNA, fungal ITS) were analyzed. For comparison, total soil C, N, and P were also analyzed. The data revealed no significant linkage of soil C, N, and P with maize biomass. A significant association of enzyme activity and gene abundance with maize biomass was not recorded. Strong positive correlation between maize above ground biomass with microbial biomass N was found (r = 0.9186, p < 0.01). Significant negative correlation was recorded between microbial biomass C:N with maize biomass (r = −0.8297, p < 0.05). These statistically significant linkages observed between microbial biomass and maize biomass suggests that microbial biomass can reflect the soil nutrient status, and possibly plant nutrient uptake. Estimation of microbial biomass can be used as a fertility indicator in soil amended with high C:N organic matter in the humid tropics.


Agriculture ◽  
2018 ◽  
Vol 8 (11) ◽  
pp. 171 ◽  
Author(s):  
Adam O’Toole ◽  
Christophe Moni ◽  
Simon Weldon ◽  
Anne Schols ◽  
Monique Carnol ◽  
...  

The application of biochar to soils is a promising technique for increasing soil organic C and offsetting GHG emissions. However, large-scale adoption by farmers will likely require the proof of its utility to improve plant growth and soil quality. In this context, we conducted a four-year field experiment between October 2010 to October 2014 on a fertile silty clay loam Albeluvisol in Norway to assess the impact of biochar on soil physical properties, soil microbial biomass, and oat and barley yield. The following treatments were included: Control (soil), miscanthus biochar 8 t C ha−1 (BC8), miscanthus straw feedstock 8 t C ha−1 (MC8), and miscanthus biochar 25 t C ha−1 (BC25). Average volumetric water content at field capacity was significantly higher in BC25 when compared to the control due to changes in BD and total porosity. The biochar amendment had no effect on soil aggregate (2–6 mm) stability, pore size distribution, penetration resistance, soil microbial biomass C and N, and basal respiration. Biochar did not alter crop yields of oat and barley during the four growing seasons. In order to realize biochar’s climate mitigation potential, we suggest future research and development efforts should focus on improving the agronomic utility of biochar in engineered fertilizer and soil amendment products.


2009 ◽  
Vol 165 (1-4) ◽  
pp. 389-397 ◽  
Author(s):  
Nur Okur ◽  
A. Levent Tuna ◽  
Bülent Okur ◽  
Hakan Altunlu ◽  
H. Hüsnü Kayikçioğlu ◽  
...  

2004 ◽  
Vol 57 ◽  
pp. 329-336 ◽  
Author(s):  
S. Sayer ◽  
G. Burch ◽  
S.U. Sarathchandra

The impact of two strains of the tall fescue (Festuca arundinacea) endophyte (Neotyphodium spp) (E) on the rhizoplane and rhizosphere soil microorganisms was examined at two sites (Lincoln endophytefree (E) and the endophyte strain AR501; and Aorangi E AR501 and a second strain AR542) Rhizosphere and rhizoplane populations of bacteria and fungi functional diversity root fungi and soil microbial biomass carbon and nitrogen were measured Most characteristics measured showed no differences between E and E samples indicating that the presence of endophytes had no impact on nontarget soil microorganisms At Aorangi soil microbial biomass C and N were significantly greater (Plt;005) in AR542 than E1 and AR501 soils Culturable fungal populations from both the rhizoplane and rhizosphere soil were significantly greater (Plt;005) in the E than the AR501 samples at Lincoln but not at Aorangi There were no differences in the functional diversity of rhizoplane microorganisms due to endophyte


Sign in / Sign up

Export Citation Format

Share Document