scholarly journals Interaction Relationship between Urbanization and Land Use Multifunctionality: Evidence from Han River Basin, China

Land ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 938
Author(s):  
Yanli Gao ◽  
Hongbo Li ◽  
Yan Song

Coordinating the interaction between urbanization and land use multifunctionality (LUMF) is of great significance in regional sustainable development. This article explores the interaction relationship between urbanization and LUMF in the Han River Basin (HRB) of China from 2000 to 2018. We used the combination weighting method, coupling coordination degree model, and geographic detector method to examine the coupling relationship and internal mechanism between urbanization and LUMF. The results showed that (1) there exists a significant correlation between urbanization and LUMF, the coupling coordination degree of each county displayed an upward trend throughout the research period, and the whole region has a radiation effect of central cities; (2) from the perspective of the internal mechanism of urbanization demand and the LUMF supply, we found that social urbanization demand is the primary demand for LUMF, while the town living function is the main supply of LUMF for urbanization, which means social urbanization has more influence than economic and population urbanization on LUMF, and the town living function has greater decisive power than agricultural production function and ecological function on urbanization; and (3) the supply and demand-influencing factors between urbanization and LUMF in each sub-region are different, and the upstream is more susceptible to determinants than the midstream and downstream because of the worse natural resource endowment. In conclusion, the critical finding provides not only guidance to understand the relationship between urbanization and LUMF but also suggests that the government should adapt to local conditions when formulating regional development planning.

2020 ◽  
Author(s):  
Jing Tian ◽  
Shenglian Guo ◽  
Chong-Yu Xu

<p>As a link between the atmosphere and the earth’s surface, the hydrological cycle is impacted by both climate change and land use/cover change (LUCC). For most basins around the world, the co-variation of climate change and LUCC will continue in the future, which highlights the significance to explore the temporal-spatial distribution and variation mechanism of runoff and to improve our ability in water resources planning and management. Therefore, the purpose of this study is to propose a framework to examine the response of runoff to climate change and LUCC under different future scenarios. Firstly, the future climate scenarios under BCC-CSM1.1 and BNU-ESM are both downscaled and bias-corrected by the Daily bias correction (DBC) method, meanwhile, the future LUCC scenarios are predicted by the Cellular Automaton-Markov (CA-Markov) model according to the integrated basin plans of future land use. Then, based on the baseline scenario S0 (meteorological data from 1966 to 2005 and current situation LUCC2010), the following three scenarios are set with different combinations of future climate land-use situations, i.e., S1: only climate change scenario; S2: only the LUCC scenario; S3: climate and LUCC co-variation scenario. Lastly, the Soil and Water Assessment Tool (SWAT) model is used to simulate the hydrological process and quantify the impacts of climate change and LUCC on the runoff yield. The proposed framework is applied to the Han River basin in China. Results show that: (1) compared with the base period (1966-2005), the annual rainfall, daily maximum, and minimum air temperature during 2021-2060 will have an increase of 4.0%, 1.8℃, 1.6℃ in RCP4.5 while 3.7%, 2.5℃, 2.3℃ in RCP8.5, respectively; (2) from 2010 to 2050, the forest land and construction land in the Han River basin will have an increase of 2.8% and 1.2%, respectively, while that of farmland and grassland will have a decrease of 1.5% and 2.5%, respectively; (3) comparing with the single climate change or LUCC scenario, the co-variation scenario possesses the largest uncertainty in runoff projection. Under the two concentration paths, there is a consistent upward change in future runoff (2021-2060) of the studied basin compared with that in the base period, furthermore, the increase rate in RCP4.5 (+5.10%) is higher than that in RCP8.5 (+2.67%). The results of this study provide a useful reference and help for water resources and land use management in the Han River basin.</p>


CATENA ◽  
2008 ◽  
Vol 75 (2) ◽  
pp. 216-222 ◽  
Author(s):  
Siyue Li ◽  
Sheng Gu ◽  
Wenzhi Liu ◽  
Hongyin Han ◽  
Quanfa Zhang

2020 ◽  
Vol 12 (3) ◽  
pp. 941
Author(s):  
Di Liu ◽  
Hai Chen ◽  
Hang Zhang ◽  
Tianwei Geng ◽  
Qinqin Shi

Land surface elements, such as land use, are in constant change and dynamically balanced, driving changes in global ecological processes and forming the regional differentiation of surface landscapes, which causes many ecological risks under multiple sources of stress. The landscape pattern index can quickly identify the disturbance caused by the vulnerability of the ecosystem itself, thus providing an effective method to support the spatial heterogeneity of landscape ecological risk. A landscape ecological risk model based on the degree of interference and fragility was constructed and spatiotemporal differentiation of risk between 1980 and 2017 in Shaanxi Province was analyzed. The spatiotemporal migration of risk was demonstrated from the perspective of geomorphological regionalization and risk gravity. Several conclusions were drawn: The risk of Shaanxi Province first increased and then decreased, at the same time, the spatial differentiation of landscape ecological risk was very significant. The ecological risk presented a significant positive correlation but the degree of autocorrelation decreased. The risk of the Qinba Mountains was low and the risk of the Guanzhong Plain and Han River basin was high. The risk of Loess Plateau and sandstorm transition zone decreased greatly and their risk gravities shifted to the southwest. The gravity of the Guanzhong Plain and Qinling Mountains had a northward trend, while the gravity of the Han River basin and Daba Mountains shifted to the southeast. In the analysis of typical regions, there were different relationships between morphological indicators and risk indexes under different geomorphological features. The appropriate engineering measures and landscape management for different geomorphological regionalization were suggested for effective reduction of ecological risks.


Sign in / Sign up

Export Citation Format

Share Document