scholarly journals Evaluating the E-Health Cloud Computing Systems Adoption in Taiwan’s Healthcare Industry

Life ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 310
Author(s):  
Shih-Chia Chang ◽  
Ming-Tsang Lu ◽  
Tzu-Hui Pan ◽  
Chiao-Shan Chen

Although the electronic health (e-health) cloud computing system is a promising innovation, its adoption in the healthcare industry has been slow. This study investigated the adoption of e-health cloud computing systems in the healthcare industry and considered security functions, management, cloud service delivery, and cloud software for e-health cloud computing systems. Although numerous studies have determined factors affecting e-health cloud computing systems, few comprehensive reviews of factors and their relations have been conducted. Therefore, this study investigated the relations between the factors affecting e-health cloud computing systems by using a multiple criteria decision-making technique, in which decision-making trial and evaluation laboratory (DEMATEL), DANP (DEMATEL-based Analytic Network Process), and modified VIKOR (VlseKriterijumska Optimizacija I Kompromisno Resenje) approaches were combined. The intended level of adoption of an e-health cloud computing system could be determined by using the proposed approach. The results of a case study performed on the Taiwanese healthcare industry indicated that the cloud management function must be primarily enhanced and that cost effectiveness is the most significant factor in the adoption of e-health cloud computing. This result is valuable for allocating resources to decrease performance gaps in the Taiwanese healthcare industry.

Cloud computing is being heavily used for implementing different kinds of applications. Many of the client applications are being migrated to cloud for the reasons of cost and elasticity. Cloud computing is generally implemented on distributing computing wherein the Physical servers are heavily distributed considering both hardware and software, the connectivity among which is established through Internet. The cloud computing systems as such have many physical servers which contain many resources. The resources can be made to be shared among many users who are the tenants to the cloud computing system. The resources can be virtualized so as to provide shared resources to the clients. Scheduling is one of the most important task of a cloud computing system which is concerned with task scheduling, resource scheduling and scheduling Virtual Machin Migration. It is important to understand the issue of scheduling within a cloud computing system more in-depth so that any improvements with reference to scheduling can be investigated and implemented. For carrying in depth research, an OPEN source based cloud computing system is needed. OPEN STACK is one such OPEN source based cloud computing system that can be considered for experimenting the research findings that are related to cloud computing system. In this paper an overview on the way the Scheduling aspect per say has been implemented within OPEN STACK cloud computing system


2015 ◽  
Vol 6 (1) ◽  
pp. 24-46
Author(s):  
Azadeh Alebrahim ◽  
Denis Hatebur ◽  
Stephan Fassbender ◽  
Ludger Goeke ◽  
Isabelle Côté

To benefit from cloud computing and the advantages it offers, obstacles regarding the usage and acceptance of clouds have to be cleared. For cloud providers, one way to obtain customers' confidence is to establish security mechanisms when using clouds. The ISO 27001 standard provides general concepts for establishing information security in an organization. Risk analysis is an essential part in the ISO 27001 standard for achieving information security. This standard, however, contains ambiguous descriptions. In addition, it does not stipulate any method to identify assets, threats, and vulnerabilities. In this paper, the authors present a method for cloud computing systems to perform risk analysis according to the ISO 27001. The authors' structured method is tailored to SMEs. It relies upon patterns to describe context and structure of a cloud computing system, elicit security requirements, identify threats, and select controls, which ease the effort for these activities. The authors' method guides companies through the process of risk analysis in a structured manner. Furthermore, the authors provide a model-based tool for supporting the ISO 27001 standard certification. The authors' tool consists of various plug-ins for conducting different steps of their method.


2018 ◽  
Vol 10 (8) ◽  
pp. 2952 ◽  
Author(s):  
Seok-Keun Yoo ◽  
Bo-Young Kim

The use of big data, artificial intelligence, and new information and communication technologies has led to sustainable developments and improved business competitiveness. Until recently cloud services were classified as having special system requirements for a business organization, and was represented by different cloud computing architecture layers like infrastructure, platform, or software as a service. However, as the environment of IT services undergoes successive changes, companies have been required to reconsider their business models and consider adopting a cloud computing system, which can bring on business achievements and development. Regarding a decision-making model for adopting a cloud computing system, this paper analyzes critical variables in a hierarchical structure of decision areas: technology, organization, and environment, as well as seven factors and 23 attributes based on underlying decision factors of cloud computing adoption by AHP (Analytic Hierarchy Process) and Delphi analysis. Furthermore, this research explores a comparative analysis between demanders and providers of cloud computing adoption. Resultantly, this study suggests several important factors for adopting a cloud computing system: top management support, competitive pressure, and compatibility. From the demander side, the high priority factor was compatibility and competitive pressure; in contrast, related advantage and top management support were regarded as priority factors for providers to service their cloud computing systems.


Author(s):  
Poria Pirozmand ◽  
Ali Asghar Rahmani Hosseinabadi ◽  
Maedeh Farrokhzad ◽  
Mehdi Sadeghilalimi ◽  
Seyedsaeid Mirkamali ◽  
...  

AbstractThe cloud computing systems are sorts of shared collateral structure which has been in demand from its inception. In these systems, clients are able to access existing services based on their needs and without knowing where the service is located and how it is delivered, and only pay for the service used. Like other systems, there are challenges in the cloud computing system. Because of a wide array of clients and the variety of services available in this system, it can be said that the issue of scheduling and, of course, energy consumption is essential challenge of this system. Therefore, it should be properly provided to users, which minimizes both the cost of the provider and consumer and the energy consumption, and this requires the use of an optimal scheduling algorithm. In this paper, we present a two-step hybrid method for scheduling tasks aware of energy and time called Genetic Algorithm and Energy-Conscious Scheduling Heuristic based on the Genetic Algorithm. The first step involves prioritizing tasks, and the second step consists of assigning tasks to the processor. We prioritized tasks and generated primary chromosomes, and used the Energy-Conscious Scheduling Heuristic model, which is an energy-conscious model, to assign tasks to the processor. As the simulation results show, these results demonstrate that the proposed algorithm has been able to outperform other methods.


T-Comm ◽  
2020 ◽  
Vol 14 (12) ◽  
pp. 72-79
Author(s):  
Aleksandr O. Volkov ◽  

For cloud service providers, one of the most relevant tasks is to maintain the required quality of service (QoS) at an acceptable level for customers. This condition complicates the work of providers, since now they need to not only manage their resources, but also provide the expected level of QoS for customers. All these factors require an accurate and well-adapted mechanism for analyzing the performance of the service provided. For the reasons stated above, the development of a model and algorithms for estimation the required resource is an urgent task that plays a significant role in cloud systems performance evaluation. In cloud systems, there is a serious variance in the requirements for the provided resource, as well as there is a need to quickly process incoming requests and maintain the proper level of quality of service – all of these factors cause difficulties for cloud providers. The proposed analytical model for processing requests for a cloud computing system in the Processor Sharing (PS) service mode allows us to solve emerging problems. In this work, the flow of service requests is described by the Poisson model, which is a special case of the Engset model. The proposed model and the results of its analysis can be used to evaluate the main characteristics of the performance of cloud systems.


2012 ◽  
Vol 190-191 ◽  
pp. 360-363
Author(s):  
Xiao Yuan Qu ◽  
Feng Zhang ◽  
Hui Feng Xue

Analyzed integrated logical structure of the cloud, back-end cloud computing systems, tens of thousands of servers, how to organize such a large number of servers is the cloud computing system efficient and stable operation of one of the key issues. We surveyed the requirement of cloud computing networking. Analyzed the architecture of cloud computing networking topology, and thought that the networking topology should be composed of two parts the center switch trunk and some tree shape branch subnet. Then we proposed the Self Adaptive Algorithm for the center swish trunk’s topology design based on the graph theory, optimization theory and classic greedy algorithm. Finally we do some experiments and comparison to verify the algorithm’s usability and advantages.


2014 ◽  
Vol 543-547 ◽  
pp. 3632-3635
Author(s):  
Hui Juan Xie ◽  
Wei She ◽  
Chang Hao Han

Cloud computing system preserves the security and privacy of a user's data by replicating data among several clouds and by using the secret sharing approach. It uses the database management system DBMS (data source) to manage and control the operations between the clients and them ulti-clouds inside a cloud service provider [1]. Generally speaking, The Shamir's threshold scheme is suitable for the shares in the cloud computing. The Shamir's threshold scheme as a secret sharing scheme will attract more attention in the cloud computing in future.


Author(s):  
Azadeh Alebrahim ◽  
Denis Hatebur ◽  
Stephan Fassbender ◽  
Ludger Goeke ◽  
Isabelle Côté

To benefit from cloud computing and the advantages it offers, obstacles regarding the usage and acceptance of clouds have to be cleared. For cloud providers, one way to obtain customers' confidence is to establish security mechanisms when using clouds. The ISO 27001 standard provides general concepts for establishing information security in an organization. Risk analysis is an essential part in the ISO 27001 standard for achieving information security. This standard, however, contains ambiguous descriptions. In addition, it does not stipulate any method to identify assets, threats, and vulnerabilities. In this paper, the authors present a method for cloud computing systems to perform risk analysis according to the ISO 27001. The authors' structured method is tailored to SMEs. It relies upon patterns to describe context and structure of a cloud computing system, elicit security requirements, identify threats, and select controls, which ease the effort for these activities. The authors' method guides companies through the process of risk analysis in a structured manner. Furthermore, the authors provide a model-based tool for supporting the ISO 27001 standard certification. The authors' tool consists of various plug-ins for conducting different steps of their method.


2013 ◽  
Vol 760-762 ◽  
pp. 959-965
Author(s):  
Xin Wan ◽  
Xiao Yin Liu ◽  
Xiang Lin Kong

Cloud computing has become a very attractive paradigm because of its economic and operational benefits. However, most enterprise executives hesitate to use cloud computing system due to the security and privacy challenges. We recognize that it is very important that enterprises assess the security risk before transforming their traditional information services into the cloud. In this paper, we discuss the existing information security risk assessment solutions and approaches, analysis the security challenges of the cloud computing. We propose a useful information security risk assessment and management framework for cloud computing environments and discuss the specific implement of framework.


Blockchain technology is recent and eminent financial technology that completely transform the business transactions. It’s a decentralized network, that support and employ variety of cryptography models. This robust and flexible secured transactions is being integrated with another eminent computing paradigm, cloud computing. In this paper, we make an attempt to review about the application of blockchain in cloud computing system. Firstly, the concept of blockchain is briefly discussed with their advantages and disadvantages. Second, the concept of cloud computing is briefly demonstrated with blockchain technology. Finally, prior papers are reviewed and presented in tabular form. It dictates that the research gaps, still, pertains in field of blockchain based on cloud computing systems. This paper assists the upcoming researchers in this field for designing novel secured models.


Sign in / Sign up

Export Citation Format

Share Document