scholarly journals Localization of METTL16 at the Nuclear Periphery and the Nucleolus Is Cell Cycle-Specific and METTL16 Interacts with Several Nucleolar Proteins

Life ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 669
Author(s):  
Lenka Stixová ◽  
Denisa Komůrková ◽  
Alena Svobodová Kovaříková ◽  
Paolo Fagherazzi ◽  
Eva Bártová

METTL16 methyltransferase is responsible for the methylation of N6-adenosine (m6A) in several RNAs. In mouse cells, we showed that the nuclear distribution of METTL16 is cell cycle-specific. In the G1/S phases, METTL16 accumulates to the nucleolus, while in the G2 phase, the level of METTL16 increases in the nucleoplasm. In metaphase and anaphase, there is a very low pool of the METTL16 protein, but in telophase, residual METTL16 appears to be associated with the newly formed nuclear lamina. In A-type lamin-depleted cells, we observed a reduction of METTL16 when compared with the wild-type counterpart. However, METTL16 does not interact with A-type and B-type lamins, but interacts with Lamin B Receptor (LBR) and Lap2α. Additionally, Lap2α depletion caused METTL16 downregulation in the nuclear pool. Furthermore, METTL16 interacted with DDB2, a key protein of the nucleotide excision repair (NER), and also with nucleolar proteins, including TCOF, NOLC1, and UBF1/2, but not fibrillarin. From this view, the METTL16 protein may also regulate the transcription of ribosomal genes because we observed that the high level of m6A in 18S rRNA appeared in cells with upregulated METTL16.

2020 ◽  
Vol 477 (14) ◽  
pp. 2715-2720
Author(s):  
Susana Castro-Obregón

The nuclear envelope is composed by an outer nuclear membrane and an inner nuclear membrane, which is underlain by the nuclear lamina that provides the nucleus with mechanical strength for maintaining structure and regulates chromatin organization for modulating gene expression and silencing. A layer of heterochromatin is beneath the nuclear lamina, attached by inner nuclear membrane integral proteins such as Lamin B receptor (LBR). LBR is a chimeric protein, having also a sterol reductase activity with which it contributes to cholesterol synthesis. Lukasova et al. showed that when DNA is damaged by ɣ-radiation in cancer cells, LBR is lost causing chromatin structure changes and promoting cellular senescence. Cellular senescence is characterized by terminal cell cycle arrest and the expression and secretion of various growth factors, cytokines, metalloproteinases, etc., collectively known as senescence-associated secretory phenotype (SASP) that cause chronic inflammation and tumor progression when they persist in the tissue. Therefore, it is fundamental to understand the molecular basis for senescence establishment, maintenance and the regulation of SASP. The work of Lukasova et al. contributed to our understanding of cellular senescence establishment and provided the basis that lead to the further discovery that chromatin changes caused by LBR reduction induce an up-regulated expression of SASP factors. LBR dysfunction has relevance in several diseases and possibly in physiological aging. The potential bifunctional role of LBR on cellular senescence establishment, namely its role in chromatin structure together with its enzymatic activity contributing to cholesterol synthesis, provide a new target to develop potential anti-aging therapies.


2021 ◽  
Author(s):  
Laura A Murray-Nerger ◽  
Joshua L Justice ◽  
Pranav Rekapalli ◽  
Josiah E Hutton ◽  
Ileana M Cristea

Abstract The integrity and regulation of the nuclear lamina is essential for nuclear organization and chromatin stability, with its dysregulation being linked to laminopathy diseases and cancer. Although numerous posttranslational modifications have been identified on lamins, few have been ascribed a regulatory function. Here, we establish that lamin B1 (LMNB1) acetylation at K134 is a molecular toggle that controls nuclear periphery stability, cell cycle progression, and DNA repair. LMNB1 acetylation prevents lamina disruption during herpesvirus type 1 (HSV-1) infection, thereby inhibiting virus production. We also demonstrate the broad impact of this site on laminar processes in uninfected cells. LMNB1 acetylation negatively regulates canonical nonhomologous end joining by impairing the recruitment of 53BP1 to damaged DNA. This defect causes a delay in DNA damage resolution and a persistent activation of the G1/S checkpoint. Altogether, we reveal LMNB1 acetylation as a mechanism for controlling DNA repair pathway choice and stabilizing the nuclear periphery.


2009 ◽  
Vol 90 (3) ◽  
pp. 579-590 ◽  
Author(s):  
Jens Milbradt ◽  
Sabrina Auerochs ◽  
Heinrich Sticht ◽  
Manfred Marschall

The nuclear egress of cytomegaloviral capsids traversing the nuclear envelope is dependent on a locally restricted destabilization of the rigid nuclear lamina. It has been suggested that the multi-component nuclear egress complex (NEC) that is formed is comprised of both viral and cellular proteins which act to recruit lamin-phosphorylating protein kinases. Recently, we reported that the lamina-associated human cytomegalovirus-encoded proteins pUL50 and pUL53, conserved among herpesviruses, interact with each other and recruit protein kinase C (PKC) to the nuclear envelope in transfected cells. The multiple interactions of the transmembrane protein pUL50 with pUL53, PKC and cellular PKC-binding protein p32, appear crucial to the formation of the NEC. In this study, we mapped individual interaction sequence elements of pUL50 by coimmunoprecipitation analysis of deletion mutants and yeast two-hybrid studies. Amino acids 1–250 were shown to be responsible for interaction with pUL53, 100–280 for PKC and 100–358 for p32. Interestingly, p32 specifically interacted with multiple NEC components, including the kinases PKC and pUL97, thus possibly acting as an adaptor for protein recruitment to the lamin B receptor. Notably, p32 was the only protein that interacted with the lamin B receptor. Immunofluorescence studies visualized the colocalization of NEC components at the nuclear rim in coexpression studies. The data imply that a tight interaction between at least six viral and cellular proteins leads to the formation of a postulated multi-protein complex required for nuclear egress.


2007 ◽  
Vol 88 (10) ◽  
pp. 2642-2650 ◽  
Author(s):  
Jens Milbradt ◽  
Sabrina Auerochs ◽  
Manfred Marschall

Human cytomegalovirus-encoded pUL50 and pUL53 belong to a group of conserved herpesviral nuclear proteins. This study describes: (i) the co-localization of pUL50 with components of the nuclear lamina such as lamins A/C and lamin B receptor by double immunofluorescent staining, (ii) a strong pUL50-mediated relocalization of pUL53 from a diffuse nuclear pattern towards a nuclear rim localization, (iii) a direct interaction between pUL50 and pUL53, as well as between pUL50 and protein kinase C (PKC), shown by yeast two-hybrid and co-immunoprecipitation analyses, (iv) in vitro phosphorylation of pUL50, which is highly suggestive of PKC activity, and finally (v) partial relocalization of PKC by pUL50/pUL53 from its main cytoplasmic localization to a marked nuclear lamina accumulation. These data suggest a role for pUL50 and pUL53 in the recruitment of PKC, an event that is considered to be important for cytomegalovirus-induced distortion of the nuclear lamina.


2021 ◽  
Vol 12 ◽  
Author(s):  
Stephanie L. Silva-Del Toro ◽  
Lee-Ann H. Allen

Neutrophils (also called polymorphonuclear leukocytes, PMNs) are heterogeneous and can exhibit considerable phenotypic and functional plasticity. In keeping with this, we discovered previously that Helicobacter pylori infection induces N1-like subtype differentiation of human PMNs that is notable for profound nuclear hypersegmentation. Herein, we utilized biochemical approaches and confocal and super-resolution microscopy to gain insight into the underlying molecular mechanisms. Sensitivity to inhibition by nocodazole and taxol indicated that microtubule dynamics were required to induce and sustain hypersegmentation, and super-resolution Stimulated Emission Depletion (STED) imaging demonstrated that microtubules were significantly more abundant and longer in hypersegmented cells. Dynein activity was also required, and enrichment of this motor protein at the nuclear periphery was enhanced following H. pylori infection. In contrast, centrosome splitting did not occur, and lamin B receptor abundance and ER morphology were unchanged. Finally, analysis of STED image stacks using Imaris software revealed that nuclear volume increased markedly prior to the onset of hypersegmentation and that nuclear size was differentially modulated by nocodazole and taxol in the presence and absence of infection. Taken together, our data define a new mechanism of hypersegmentation that is mediated by microtubules and dynein and as such advance understanding of processes that regulate nuclear morphology.


Development ◽  
1988 ◽  
Vol 102 (2) ◽  
pp. 271-278
Author(s):  
E. Houliston ◽  
M.N. Guilly ◽  
J.C. Courvalin ◽  
B. Maro

The expression of nuclear lamins during mouse preimplantation development was studied by immunofluorescence, immunoblotting and immunoprecipitation. Two sera were used, specific either for lamin B or lamins A and C. Both sera gave a positive staining of the nuclear periphery throughout preimplantation development (fertilized eggs to late blastocysts). Immunoblots revealed that the three lamins were present in eggs and blastocysts. However, lamin A from eggs was found to have a higher apparent Mr than lamin A from blastocysts and other mouse cells. Using immunoprecipitation, synthesis of lamin A was detected in eggs while synthesis of lamin B was detected in 8-cell embryos and blastocysts, indicating that at least some of the lamins used during early development do not come from a store in the egg. These results are discussed in relation to the possible role of lamins during cell differentiation.


eLife ◽  
2016 ◽  
Vol 5 ◽  
Author(s):  
Pei-Ling Tsai ◽  
Chenguang Zhao ◽  
Elizabeth Turner ◽  
Christian Schlieker

Lamin B receptor (LBR) is a polytopic membrane protein residing in the inner nuclear membrane in association with the nuclear lamina. We demonstrate that human LBR is essential for cholesterol synthesis. LBR mutant derivatives implicated in Greenberg skeletal dysplasia or Pelger-Huët anomaly fail to rescue the cholesterol auxotrophy of a LBR-deficient human cell line, consistent with a loss-of-function mechanism for these congenital disorders. These disease-causing variants fall into two classes: point mutations in the sterol reductase domain perturb enzymatic activity by reducing the affinity for the essential cofactor NADPH, while LBR truncations render the mutant protein metabolically unstable, leading to its rapid degradation at the inner nuclear membrane. Thus, metabolically unstable LBR variants may serve as long-sought-after model substrates enabling previously impossible investigations of poorly understood protein turnover mechanisms at the inner nuclear membrane of higher eukaryotes.


1998 ◽  
Vol 111 (23) ◽  
pp. 3471-3485 ◽  
Author(s):  
T.I. Mical ◽  
M.J. Monteiro

The mechanism by which human nuclear lamin B is targeted and assembled has been studied by transfecting into mammalian cells lamin mutants deleted of three sequences unique to lamins. Nuclear lamins contain an extra 42 amino acids (aa) in their rod domains and NLS and CAAX motifs in their tail domains, which distinguishes them from cytoplasmic IF proteins. These three sequences act in concert to ensure correct temporal and spatial assembly of lamin B. Deletion of any one of these three sequences from lamin B did not significantly disrupt nuclear lamina targeting, but when two or more of these sequences were deleted, targeting was severely compromised. The CAAX motif is necessary for the efficient integration of lamin B into an already formed nuclear lamina, since lamin B CAAX- mutants had reduced targeting to the lamina when arrested in S phase of the cell cycle. CAAX-deficient mutant lamin B proteins were soluble and not associated with membranes at mitosis, proving that the CAAX motif is responsible for association of human lamin B with membranes. In addition, CAAX- mutant lamin B proteins fractionated independently of the lamin B-receptor (LBR), indicating that these two proteins do not bind directly to each other.


2003 ◽  
Vol 3 ◽  
pp. 1-20 ◽  
Author(s):  
Roland Foisner

The nuclear envelope (NE) consists of an inner and an outer membrane, nuclear pore complexes, and the underlying nuclear lamina, a filamentous scaffold structure formed by lamins. The inner membrane is linked to the lamina and chromatin by its integral membrane proteins, such as lamin B receptor (LBR), emerin, and various isoforms of lamina-associated polypeptides (LAP) 1 and 2, which bind lamins and/or chromatin. During mitosis, the NE is disassembled upon phosphorylation of its core components, and the NE is torn apart by a dynein-driven microtubule-dependent mechanism. Nuclear reassembly after sister chromatid separation requires a timely coordinated and dephosphorylation-dependent association of lamin-binding proteins and lamins with chromosomal proteins and targeting of membranes to specific sites on chromosomes. Various chromatin-binding domains in lamina proteins, such as the LEM domain, present in all LAP2 isoforms and in emerin, as well as unique regions in lamina proteins and in specific LAP2 isoforms have been implicated in defined steps of NE reformation. Furthermore, novel mechanisms of membrane fusion involving Ran GTPase are just beginning to emerge.


1994 ◽  
Vol 125 (6) ◽  
pp. 1201-1212 ◽  
Author(s):  
R D Moir ◽  
M Montag-Lowy ◽  
R D Goldman

The nuclear lamins form a fibrous structure, the nuclear lamina, at the periphery of the nucleus. Recent results suggest that lamins are also present as foci or spots in the nucleoplasm at various times during interphase of the cell cycle (Goldman, A. E., R. D. Moir, M. Montag-Lowy, M. Stewart, and R. D. Goldman. 1992. J. Cell Biol. 104:725-732; Bridger, J. M., I. R. Kill, M. O'Farrell, and C. J. Hutchison. 1993. J. Cell Sci. 104:297-306). In this report we demonstrate that during mid-late S-phase, nuclear foci detected with lamin B antibodies are coincident with sites of DNA replication as detected by the colocalization of sites of incorporation of bromodeoxyuridine (BrDU) or proliferating cell nuclear antigen (PCNA). The relationship between lamin B and BrDU is not maintained in the following G1 stage of the cell cycle. Furthermore, the nuclear staining patterns seen with antibodies directed against lamins A and C in mid-late S-phase do not coalign with the lamin B/BrDU-containing structures. These results imply that there is a role for lamin B in the organization of replicating chromatin during S phase.


Sign in / Sign up

Export Citation Format

Share Document