scholarly journals Intracellular Development of Resident Cardiac Stem Cells: An Overlooked Phenomenon in Myocardial Self-Renewal and Regeneration

Life ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 723
Author(s):  
Galina Belostotskaya ◽  
Dmitry Sonin ◽  
Michael Galagudza

At present, the approaches aimed at increasing myocardial regeneration after infarction are not available. The key question is the identity of cells capable of producing functional cardiac myocytes (CMs), replenishing those lost during ischemia. With identification of resident cardiac stem cells (CSCs), it has been supposed that this cell population may be crucial for myocardial self-renewal and regeneration. In the last few years, the focus has been shifted towards another concept, implying that new CMs are produced by dedifferentiation and proliferation of mature CMs. The observation that CSCs can undergo development inside immature cardiac cells by formation of “cell-in-cell structures” (CICSs) has enabled us to conclude that encapsulated CICSs are implicated in mammalian cardiomyogenesis over the entire lifespan. Earlier we demonstrated that new CMs are produced through formation of CSC-derived transitory amplifying cells (TACs) either in the CM colonies or inside encapsulated CICSs. In this study, we described the phenomenon of CSC penetration into mature CMs, resulting in the formation of vacuole-like CICSs (or non-encapsulated CICSs) containing proliferating CSCs with subsequent differentiation of CSC progeny into TACs and their release. In addition, we compared the phenotypes of TACs derived from encapsulated and non-encapsulated CICSs developing in immature and mature CMs, respectively.

Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 1681-1681
Author(s):  
Francesco Cerisoli ◽  
Lucio Barile ◽  
Roberto Gaetani ◽  
Letizia Cassinelli ◽  
Giacomo Frati ◽  
...  

Abstract A growing amount of data indicates that the heart harbours stem cells (CSCs) with regenerative potential, however the origin(s) of adult CSCs is still unknown. The expression of Kit a marker of several stem cell types, including hematopoietic and cardiac stem cells, suggests that Kit positive-CSCs may derive, at least in part, from extracardiac sources. In addition, it has been suggested that bone marrow (BM) cells may be mobilized, home into the heart and trans-differentiate into cardiomyocytes, following myocardial infarction. To investigate whether BM cells can contribute to repopulate the cardiac Kit+ stem cell pool, we transplanted BM cells from a mouse line expressing transgenic Green Fluorescent Protein (GFP) under the control of Kit regulatory elements, into wild type irradiated recipients. After hematological reconstution (4–5 months) and following cardiac infarction, cardiac cells were grown in vitro into typical “cardiospheres” (Messina et al., Circ. Res. 95,911;2004). The cardiospheres obtained, although not numerous, were all GFP fluorescent; this result was confirmed by PCR analysis of genomic DNA of individual CSs. At confocal microscopy, cells at the periphery of CSs showed coexistence of low GFP with cardiac markers, such as Troponin I and the transcription factor NKx2.5, consistent with the expected kit downregulation during cardiac differentiation. Our results show that cells of bone marrow origin can give rise, after homing into the heart, to cells with properties of Kit+ CSC. In contrast, CSCs isolated from kit/GFP transgenic mice are not able, upon transplantation, to repopulate the bone marrow of wild-type irradiated recipients. Thus, at least in pathological conditions, part of the Kit-positive CSCs population may be generated by BM-derived cells, capable of adopting in the heart the same function and features of cardiac stem cells.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 1274-1274
Author(s):  
Elizabeth Csaszar ◽  
Daniel Kirouac ◽  
Mei Yu ◽  
Caryn Ito ◽  
Peter W. Zandstra

Abstract Abstract 1274 Clinical outcomes of hematopoietic stem cell (HSC) transplantation are correlated with infused progenitor cell dose. Limited cell numbers in a typical umbilical cord blood (UCB) unit restricts the therapeutic potential of UCB and motivates ex vivo expansion of these cells. Strategies to grow HSCs have relied on the supplement of molecules acting directly on the stem cell population; however, in all cases, sustained HSC growth is limited by the concurrent growth of more mature cells and their endogenously produced inhibitory signaling factors. Despite increasing evidence for the important role of intercellular (between cell) communication networks, the identity and impact of non-stem cell autonomous feedback signaling remains poorly understood. Simultaneous kinetic tracking of more than 30 secreted factors produced during UCB culture, including TGF-b1, MIP-1b, and MCP-1, in combination with computational simulations of cell population dynamics, enabled us to develop a global control strategy predicted to reduce inhibitory paracrine signaling and, consequently, increase HSC self-renewal. By maintaining endogenously produced ligands at specified levels using a tuneable fed-batch (automated media dilution) strategy, we achieved significant improvements in expansions of total cell numbers (∼180-fold), CD34+ cells (∼80-fold), and NOD/SCID/IL-2Rgc-null (NSG) repopulating cells (∼11-fold, detected at limiting dilution). The fed-batch strategy has been integrated into an automated bioreactor, allowing for the generation of a clinically-relevant cell product after 12 days of culture, with minimal user manipulation. As this strategy targets the HSC environment and not the stem cells directly, it has the ability to act in combination with other expansion strategies to produce synergistic results. Unexpectedly, supplementation of the soluble protein, TAT-HOXB4, to the system, yielded the expected boost in progenitor expansion only in “sub-optimal” control conditions but not in the fed-batch system. Hypothesizing that the efficacy of HOXB4 may be dependent on the skewing of supportive vs. non-supportive cell populations, and the consequent impact of paracrine ligand production, we performed kinetic tracking of 20 hematopoietic cell types during several supportive (fed-batch, HOXB4 supplemented, Notch ligand Delta1 supplemented) vs. non-supportive (control) cultures. Meta analysis of these data revealed a non-autonomous link between HOXB4, increased megakaryocyte production, and stem cell proliferation, as well as between Notch delta-1 ligand, decreased myeloid cell production, and a decrease in the growth inhibition of stem cells. These predictions have been experimentally validated using co-cultures of sorted purified HSCs and CD41+ megakaryocykes and CD14+ monocytes. Our results identify complex connections between mature cell lineages and stem cell fate decisions and we expect to report a direct link between cell-cell interactions emerging from culture manipulations and the resulting impact on HSC self-renewal. Collectively, these studies support a dominant role for non-stem cell autonomous feedback signaling in the regulation of HSC self-renewal. Overcoming cell non-autonomous inhibition of HSC self-renewal has allowed for novel strategies to enhance HSC numbers ex vivo, thereby facilitating the production of clinically relevant quantities of stem and progenitor cells and enabling more effective strategies to treat hematologic disease. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 265-265
Author(s):  
Keisuke Ito ◽  
Atsushi Hirao ◽  
Fumio Arai ◽  
Sahoko Matsuoka ◽  
Keiyo Takubo ◽  
...  

Abstract Haematopoietic stem cells (HSCs) undergo self-renewing cell divisions and maintain blood production for their lifetime. Appropriate control of HSC self-renewal is critical for maintenance of haematopoietic homeostasis. Here we show that activation of p38 MAPK limits lifespan of HSCs in response to increasing levels of reactive oxygen species (ROS) in vivo. Although normal quiescent HSCs maintain a low level of oxidative stress, an increase in ROS was observed in HSCs after transplantation as well as in aged mice. In vitro treatment with BSO (Buthionine sulfoximine), which depletes intra-cellular glutathion, increased ROS (H2O2) level in immature hematopoietic cell population, c-kit+Sca1+Lin- (KSL) cells, in a dose-dependent manner. Low dose concentration of BSO suppressed reconstitution capacity of HSCs, whereas higher concentration did not affect progenitors. These data indicate that HSCs are much more sensitive to increased ROS than progenitors and are consistent with our previous results from Atm−/− mice in which ROS level is elevated in vivo. Here we focused on MAPKs for the stem cell dysfunction since it has been shown that several MAPKs are activated in response to ROS. We evaluated effects of MAPK inhibitors for p38, JNK or ERK in incubation of KSL cell with BSO. p38 inhibitor (SB203580), neither JNK nor ERK inhibitor, restored reconstitution capacity of HSCs after transplantation, suggesting that activation of p38 may contributes to defect of stem cell function in vivo. To address the question, we evaluated p38 activation in Atm−/− BM cells by immunohistochemistry. Surprisingly, p38 protein was phosphorylated only in KSL cells, but not other more differentiated cell populations, despite that the ROS levels were comparable among the cell population of mice. In response to activation of p38, p16INK4a was up-regulated only in KSL cells. The data indicates a possibility that stem cell-specific p38 activation negatively regulates self-renewal of HSCs. We then investigated a role of p38 activation on self-renewal of HSCs in vivo. When p38 inhibitor was intraperitoneally administered both before and after BMT, the level of repopulation achieved was comparable to that of the wild-type. Furthermore, Atm−/− mice that received long-term p38 inhibitor treatment did not show either anemia, a decrease in progenitor colony-forming capacity, or reduced frequencies of stem cell subsets. These data demonstrate that the activation of p38 present in HSCs promotes the exhaustion of stem cell pool in response to elevation of ROS. It has been proposed that aging is driven in part by a gradual depletion of stem cell functional capacity. There are evidences that inappropriate production of oxidants is connected to aging and life span. We propose a possibility that p38 activation in response to ROS plays a critical role for limit of stem cell capacity.


2006 ◽  
Vol 3 (S1) ◽  
pp. S8-S13 ◽  
Author(s):  
Daniele Torella ◽  
Georgina M Ellison ◽  
Simón Méndez-Ferrer ◽  
Borja Ibanez ◽  
Bernardo Nadal-Ginard

2005 ◽  
Vol 102 (24) ◽  
pp. 8692-8697 ◽  
Author(s):  
K. Urbanek ◽  
D. Torella ◽  
F. Sheikh ◽  
A. De Angelis ◽  
D. Nurzynska ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document