p38 inhibitor
Recently Published Documents


TOTAL DOCUMENTS

150
(FIVE YEARS 28)

H-INDEX

33
(FIVE YEARS 2)

2021 ◽  
Vol 8 ◽  
Author(s):  
Yinyin Zhang ◽  
Kun Zhang ◽  
Yuling Zhang ◽  
Lingqu Zhou ◽  
Hui Huang ◽  
...  

Objective: Vascular calcification (VC) is an important predictor of cardiovascular morbidity and mortality in patients with chronic renal failure (CRF). It is well-known that obesity and metabolic syndrome (OB/MS) predicts poor prognosis of CRF patients. However, the influence of OB/MS on VC in CRF patients isn't clear. IL-18 mediates OB/MS-related inflammation, but whether IL-18 is involved in OB/MS -mediated VC in CRF patients hasn't been studied. In this study, it was explored that whether OB/MS caused by high-fat diet (HFD) can affect the level of serum IL-18 and aggravate the degree of VC in CRF rats. Furthermore, it was studied that whether IL-18 induces rat vascular smooth muscle cells (VSMCs) calcification by activating the MAPK pathways.Approach: The rats were randomly assigned to the sham-operated, CRF and CRF + HFD groups. CRF was induced by 5/6 nephrectomy. Serum IL-18 levels and aortic calcification indicators were compared in each group. Primary rat VSMCs calcification were induced by β-glycerophosphate and exposed to IL-18. VSMCs were also treated with MAPK inhibitors.Results: The weight, serum levels of hsCRP, TG and LDL-C in CRF + HFD group were significantly higher than those in sham-operated and CRF groups (p < 0.05). Compared with the sham-operated group, the calcium content and the expression of BMP-2 of aorta in CRF and CRF + HFD groups were significantly increased (p < 0.05). Moreover, the calcium content and the expression of BMP-2 of aorta in CRF + HFD group was significantly higher than those in CRF group (p < 0.05). And the serum IL-18 level was positively correlated with aortic calcium content. It was also found that p38 inhibitor SB203580 can suppress the VSMCs calcification and osteoblast phenotype differentiation induced by IL-18. But the JNK inhibitor SP600125 can't suppress the VSMCs calcification and osteoblast phenotype differentiation induced by IL-18.Conclusions: These findings suggest that obesity-related inflammation induced by high-fat diet could exacerbate VC in CRF rats. Furthermore, serum IL-18 level had a positive correlation with the degree of VC. It is also found that IL-18 promoted osteogenic differentiation and calcification of rat VSMCs via p38 pathway activation.


2021 ◽  
Vol 14 (11) ◽  
pp. 1183
Author(s):  
Hsiao-Hang Chung ◽  
Ming-Ju Hsieh ◽  
Yih-Shou Hsieh ◽  
Pei-Ni Chen ◽  
Chung-Po Ko ◽  
...  

Glioblastoma multiforme (GBM) is one of the most aggressive and common types of brain tumor. Due to its high proliferation ability, a high lethality rate has been observed with this malignant glial tumor. Terminalia catappa L. (T. catappa) is currently known to have anti-inflammatory and anti-carcinogenesis effects. However, few studies have examined the mechanisms of the leaf extracts of T. catappa (TCE) on GBM cells. In the current study, we demonstrated that TCE can significantly inhibit the migration and invasion capabilities of GBM cell lines without showing biotoxic effects. Matrix metalloproteinases-2 (MMP-2) activity and protein expression were attenuated by reducing the p38 phosphorylation involved in the mitogen-activated protein kinase (MAPK) pathway. By treating with TCE and/or p38 inhibitor (SB203580), we confirmed that p38 MAPK is involved in the inhibition of cell migration. In conclusion, our results demonstrated that TCE inhibits human GBM cell migration and MMP-2 expression by regulating the p38 pathway. These results reveal that TCE contains potent therapeutic compounds which could be applied for treating GBM brain tumors.


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Xingrui Gong ◽  
Rongmei Fan ◽  
Qinghong Zhu ◽  
Xihong Ye ◽  
Yongmei Chen ◽  
...  

Chronic morphine intake for treating various pain is frequently concomitant with morphine-induced hyperalgesia and tolerance. The mechanisms can be explained by the activation of p38-MAPK proteins in microglia in the spinal cord horn. Exercise has been shown to prevent the development of microglia overactivation. Thus, we designed to test whether exercise prevents the morphine-induced hyperalgesia and tolerance as well as suppression of p38 phosphorylation. A p38 inhibitor SB203580, exercise, and exercise preconditioning were used for treating morphine-induced hyperalgesia and tolerance development in the present study. The behavior tests for hyperalgesia and tolerance were performed in male Wistar rats before and after morphine administration. Western blotting and immunostaining for examining phosphorylated-p38 expression were performed after the behavior tests. Our results showed that SB203580 and exercise, but not exercise preconditioning, prevented the occurrence of morphine-induced hyperalgesia and tolerance. Meanwhile, exercise decreased morphine-induced phosphorylated-p38 overexpression. In summary, exercise prevented the development of morphine-induced hyperalgesia and tolerance. The mechanism may be related to inhibition of p38 phosphorylation.


2021 ◽  
Vol 2021 ◽  
pp. 1-6
Author(s):  
Yanyan Song ◽  
Yue Zhang ◽  
Peijun Zhang ◽  
Peng Yu ◽  
Xinchi Shang ◽  
...  

Fluorine is an important trace element that is widely dispersed, and studies showed that fluorine could cause severe toxicity to fish. The aim of this study was to investigate the effects of fluorine on neutrophil extracellular trap (NET) formation in common carp and clarify the possible mechanism. The neutrophils were isolated and exposed to 0.25, 0.5, or 1 mM sodium fluoride (NaF). The results showed that NaF could induce the formation of NETs which exhibited a DNA-based network structure modified with histones and myeloperoxidase (MPO). Furthermore, NaF led to the production of reactive oxygen species (ROS) in neutrophils. Western blot results showed that NaF significantly increased the phosphorylation of AMPK and p38. In addition, our results showed that NaF-induced NET formation could be inhibited by an AMPK or p38 inhibitor. In conclusion, our results showed that NaF induced NET formation in neutrophils through regulation of the AMPK/p38 signaling pathway.


PLoS ONE ◽  
2021 ◽  
Vol 16 (5) ◽  
pp. e0252163
Author(s):  
Chun-Hao Chang ◽  
Yun-Li Lin ◽  
Yeu-Sheng Tyan ◽  
Yun-Hsuan Chiu ◽  
Ya-Han Liang ◽  
...  

Human umbilical cord Wharton’s jelly derived mesenchymal stem cells (hUCMSCs), a source of cell therapy, have received a great deal of attention due to their homing or migrating ability in response to signals emanating from damaged sites. It has been found that IL-1β possesses the ability to induce the expression of matrix metalloproteinase-3 (MMP-3) in bone marrow MSCs. MMP-3 is involved in cell migration in various types of cells, including glioblastoma, vascular smooth muscle, and adult neural progenitor cells. In this study, we proposed that IL-1β influences hUCMSCs migration involving MMP-3. The expression level of MMP-3 in IL-1β-induced hUCMSCs was verified using cDNA microarray analysis, quantitative real-time PCR, ELISA and Western blot. Wound-healing and trans-well assay were used to investigate the cell migration and invasion ability of IL-1β-treated hUCMSCs. In addition, we pre-treated hUCMSCs with interleukin-1 receptor antagonist, MMP-3 inhibitors (ALX-260-165, UK 356618), or transfected with MMP-3 siRNA to confirm the role of MMP3 in IL-1β-induced cell migration. Our results showed that IL-1β induced MMP-3 expression is related to the migration of hUCMSCs. Moreover, extracellular signal-regulated protein kinases 1 and 2 (ERK1/2) inhibitor U0126, p38 inhibitor SB205380, JNK inhibitor SP600125 and Akt inhibitor GSK 690693 decreased IL-1β-induced MMP-3 mRNA and protein expression. The migration and invasion ability analyses showed that these inhibitors attenuated the IL-1β-induced migration and invasion ability of hUCMSCs. In conclusion, we have found that IL-1β induces the expression of MMP-3 through ERK1/2, JNK, p38 MAPK and Akt signaling pathways to enhance the migration of hUCMSCs. These results provide further understanding of the mechanisms in IL-1β-induced hUCMSCs migration to injury sites.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ying Tang ◽  
Mengchun Zhou ◽  
Rongrong Huang ◽  
Ling Shen ◽  
Li Yang ◽  
...  

Abstract Background Astrocytes participate in innate inflammatory responses within the mammalian central nervous system (CNS). HECT domain E3 ubiquitin protein ligase 1 (HECTD1) functions during microglial activation, suggesting a connection with neuroinflammation. However, the potential role of HECTD1 in astrocytes remains largely unknown. Results Here, we demonstrated that HECTD1 was upregulated in primary mouse astrocytes after 100 ng/ml lipopolysaccharide (LPS) treatment. Genetic knockdown of HECTD1 in vitro or astrocyte-specific knockdown of HECTD1 in vivo suppressed LPS-induced astrocyte activation, whereas overexpression of HECTD1 in vitro facilitated LPS-induced astrocyte activation. Mechanistically, we established that LPS activated σ-1R-JNK/p38 pathway, and σ-1R antagonist BD1047, JNK inhibitor SP600125, or p38 inhibitor SB203580 reversed LPS-induced expression of HECTD1, thus restored LPS-induced astrocyte activation. In addition, FOXJ2 functioned as a transcription factor of HECTD1, and pretreatment of primary mouse astrocytes with BD1047, SB203580, and SP600125 significantly inhibited LPS-mediated translocation of FOXJ2 into the nucleus. Conclusions Overall, our present findings suggest that HECTD1 participates in LPS-induced astrocyte activation by activation of σ-1R-JNK/p38-FOXJ2 pathway and provide a potential therapeutic strategy for neuroinflammation induced by LPS or any other neuroinflammatory disorders.


2021 ◽  
Vol 22 (2) ◽  
pp. 499
Author(s):  
Hiroaki Eguchi ◽  
Haruka Matsunaga ◽  
Saki Onuma ◽  
Yuta Yoshino ◽  
Toshiyuki Matsunaga ◽  
...  

Claudin-2 (CLDN2), an integral membrane protein located at tight junctions, is abnormally expressed in human lung adenocarcinoma tissues, and is linked to drug resistance in human lung adenocarcinoma A549 cells. CLDN2 may be a target for the prevention of lung adenocarcinoma, but there are few compounds which can reduce CLDN2 expression. We found that cyanidin-3-glucoside (C3G), the anthocyanin with two hydroxyl groups on the B-ring, and cyanidin significantly reduce the protein level of CLDN2 in A549 cells. In contrast, pelargonidin-3-glucoside (P3G), the anthocyanin with one hydroxyl group on the B-ring, had no effect. These results suggest that cyanidin and the hydroxyl group at the 3-position on the B-ring play an important role in the reduction of CLDN2 expression. The phosphorylation of Akt, an activator of CLDN2 expression at the transcriptional level, was inhibited by C3G, but not by P3G. The endocytosis and lysosomal degradation are suggested to be involved in the C3G-induced decrease in CLDN2 protein expression. C3G increased the phosphorylation of p38 and the p38 inhibitor SB203580 rescued the C3G-induced decrease in CLDN2 expression. In addition, SB203580 rescued the protein stability of CLDN2. C3G may reduce CLDN2 expression at the transcriptional and post-translational steps mediated by inhibiting Akt and activating p38, respectively. C3G enhanced the accumulation and cytotoxicity of doxorubicin (DXR) in the spheroid models. The percentages of apoptotic and necrotic cells induced by DXR were increased by C3G. Our data suggest that C3G-rich foods can prevent the chemoresistance of lung adenocarcinoma A549 cells through the reduction of CLDN2 expression.


2020 ◽  
Vol 2020 ◽  
pp. 1-15
Author(s):  
Xiangguo Duan ◽  
Yaru Lan ◽  
Xiaoyu Zhang ◽  
Shaozhang Hou ◽  
Jian Chen ◽  
...  

In previous studies, Lycium barbarum polysaccharides (LBP), a traditional Chinese medicine, can promote immature dendritic cells (DCs) to mature. However, the molecular mechanisms by which LBP works are not yet elucidated. Here, we found that LBP can induce DCs maturation, which is mainly characterized by the upregulation of MHCII and costimulatory molecules (CD80, CD86), and increase the production of IL-6 and IL-4. Furthermore, we found that LBP could increase the mRNA and protein expression of TLR4, p38, Erk1/2, JNK, and Blimp1 signal molecules. More interestingly, after blocking by Toll-like receptor 4 inhibitor, Resatorvid (TAK 242), the mRNA and protein expression of TLR4, Erk1/2, and Blimp1 was significantly decreased while the expression of p38 and JNK has not changed. Then, we found that after blocking by p38 inhibitor (SB203580), Erk inhibitor (PD98059), and JNK inhibitor (SP603580) separately, Blimp1 protein expression was significantly reduced; after downregulating Blimp1 by Blimp1-siRNA, the production of IL-6 was reduced. In conclusion, our results indicate that LBP can induce maturation of DCs through the TLR4-Erk1/2-Blimp1 signal pathway instead of the JNK/p38-Blimp1 pathway. Our findings may provide a novel evidence for understanding the molecular mechanisms of LBP on activating murine DCs.


2020 ◽  
Author(s):  
Tasuku Yonaha ◽  
Chika Miyagi‐Shiohira ◽  
Kazuho Kuwae ◽  
Yoshihito Tamaki ◽  
Kai Nishime ◽  
...  

2020 ◽  
Author(s):  
Yangyang Sun ◽  
Lianxin Hu ◽  
Chengxi Liu ◽  
Ganglin Su ◽  
Lina Yang ◽  
...  

Abstract Background The progression of cancer is driven by the deregulation of various signaling pathways, especially Hippo and p38 MAPK pathway. TAZ, a downstream target of Hippo pathway, has been demonstrated to promote tumorigenesis in various cancers, but the functions of both Hippo and p38 signaling in bladder cancer cells are still unclear. Methods T24 and 5637 cells with knockdown of TAZ were constructed. EdU cell proliferation assay and western blot were used to illustrate the effects of TAZ on the proliferation and apoptosis of bladder cancer cells and the expression of p38 protein and phosphorylation. We overexpressed Flag-tagged TAZ in 293T cells. Western blot and RT-qPCR were used to further illustrate the effect of TAZ on the expression level of p38. The p38 inhibitor (PH-797804) combined with western blot and EDU cell proliferation assay were used to show whether TAZ affects the proliferation and apoptosis of bladder cancer cells by regulating the activity of p38.Results The shTAZ contained in T24 and 5637 cells significantly inhibited bladder cancer cells proliferation, in addition, the knockdown of TAZ-induced apoptosis of T24 and 5637 cells was found out. The loss of TAZ led to the upregulation of p38 protein as well as phosphorylation. The over-expression of Flag-TAZ had no obvious effect on p38 mRNA level, but p38 protein was reduced clearly in 293T cells. ShTAZ induced the upregulation of cleaved-caspase 3, which disappeared when treated with PH-797804, a p38 inhibitor, and the reduction to EdU positive cells induced by shTAZ was reversed by PH-797804 treatment, which suggested that p38 activity could mediate both cell proliferation and apoptosis regulated by TAZ knockdown. Conclusions In this study, it was demonstrated that TAZ could regulate the proliferation and apoptosis of bladder cancer cells by regulating the stability of p38 protein. Our finding uncovered the novel functional interaction between Hippo and p38 MAPK pathway. An in-depth understanding of this question may indicate a new direction of diagnosis or treatment for bladder cancer.


Sign in / Sign up

Export Citation Format

Share Document