scholarly journals Preparation and Characterization of Porous Scaffolds Based on Poly(3-hydroxybutyrate) and Poly(3-hydroxybutyrate-co-3-hydroxyvalerate)

Life ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 935
Author(s):  
Asiyah Esmail ◽  
João R. Pereira ◽  
Chantal Sevrin ◽  
Christian Grandfils ◽  
Ugur Deneb Menda ◽  
...  

Poly(hydroxyalkanoates) (PHAs) with different material properties, namely, the homopolymer poly(3-hydroxybutyrate), P(3HB), and the copolymer poly(3-hydroxybutyrate-co-3-hydroxyvalerate, P(3HB-co-3HV), with a 3HV of 25 wt.%, were used for the preparation of porous biopolymeric scaffolds. Solvent casting with particulate leaching (SCPL) and emulsion templating were evaluated to process these biopolymers in porous scaffolds. SCPL scaffolds were highly hydrophilic (>170% swelling in water) but fragile, probably due to the increase of the polymer’s polydispersity index and its high porosity (>50%). In contrast, the emulsion templating technique resulted in scaffolds with a good compromise between porosity (27–49% porosity) and hydrophilicity (>30% water swelling) and without impairing their mechanical properties (3.18–3.35 MPa tensile strength and 0.07–0.11 MPa Young’s Modulus). These specifications are in the same range compared to other polymer-based scaffolds developed for tissue engineering. P(3HB-co-3HV) displayed the best overall properties, namely, lower crystallinity (11.3%) and higher flexibility (14.8% elongation at break. Our findings highlight the potency of our natural biopolyesters for the future development of novel porous scaffolds in tissue engineering, thanks also to their safety and biodegradability.

2014 ◽  
Vol 11 (2) ◽  
pp. 184-195 ◽  
Author(s):  
Francesca Intranuovo ◽  
Roberto Gristina ◽  
Francesco Brun ◽  
Sara Mohammadi ◽  
Giacomo Ceccone ◽  
...  

2014 ◽  
Vol 789 ◽  
pp. 130-135 ◽  
Author(s):  
Ning Wang ◽  
Yong Ju Zang ◽  
Gui Zhi Ren ◽  
Qi Lin Wu

Porous scaffolds of polylactic acid-polyethylene glycol block copolymers (PLA-PEG) biocomposite were fabricated by solvent casting-particulate leaching method using sodium chloride as the porogen. With the aim of evaluating the influence of porosity on mechanical properties and biocompatibility, three specimens of scaffolds which have different porosity (around 50%, 60%, 70%) were fabricated. Murine fibroblast grew cells (L929) were seeded into PLA-PEG porous biocomposite scaffolds. The tetrazolium salt 3-[4, 5-dimethylthiazol-2-yl]-2, 5-diphenyltetrazolium Bromide (MTT), scanning electron microscopy and confocal microscopy were carried out to characterize cell proliferation and morphology. The composite scaffolds with the porosity of 50% possessed better mechanical properties. All scaffolds support attachment, spreading and proliferation of L929, and the biocompatibility of scaffolds could be improved by increasing the porosity. The fabricated PLA-PEG porous biocomposite scaffolds with good mechanical properties and biocompatibility might be used in bone tissue engineering.


2018 ◽  
Vol 2018 ◽  
pp. 1-7 ◽  
Author(s):  
Yanbo Zhang ◽  
Ruiyan Li ◽  
Wenzheng Wu ◽  
Yun’an Qing ◽  
Xiongfeng Tang ◽  
...  

The purpose of this work was to investigate the porous polyetherimide scaffold (P-PEIs) as an alternative biopolymer for bone tissue engineering. The P-PEIs was fabricated via solvent casting and particulate leaching technique. The morphology, phase composition, roughness, hydrophilicity, and biocompatibility of P-PEIs were evaluated and compared with polyetherimide (PEI) and Ti6Al4V disks. P-PEIs showed a biomimetic porous structure with a modulus of 78.95 ± 2.30 MPa. The water contact angle of P-PEIs was 75.4 ± 3.39°, which suggested that P-PEIs had a wettability surface. Moreover, P-PEIs provides a feasible environment for cell adhesion and proliferation. The relative cell adhesion capability and the cell morphology on P-PEIs were better than PEI and Ti6Al4V samples. Furthermore, the MC3T3-E1 cells on P-PEIs showed faster proliferation rate than other groups. It was revealed that the P-PEIs could be a potential material for the application of bone regeneration.


Author(s):  
Yi Zhang ◽  
Richard T. Tran ◽  
Dipendra Gyawali ◽  
Jian Yang

Finding an ideal biomaterial with the proper mechanical properties and biocompatibility has been of intense focus in the field of soft tissue engineering. This paper reports on the synthesis and characterization of a novel crosslinked urethane-doped polyester elastomer (CUPOMC), which was synthesized by reacting a previously developed photocrosslinkable poly (octamethylene maleate citrate) (POMC) prepolymers (pre-POMC) with 1,6-hexamethylene diisocyanate (HDI) followed by thermo- or photo-crosslinking polymerization. The mechanical properties of the CUPOMCs can be tuned by controlling the molar ratios of pre-POMC monomers, and the ratio between the prepolymer and HDI. CUPOMCs can be crosslinked into a 3D network through polycondensation or free radical polymerization reactions. The tensile strength and elongation at break of CUPOMC synthesized under the known conditions range from 0.73±0.12MPa to 10.91±0.64MPa and from 72.91±9.09% to 300.41±21.99% respectively. Preliminary biocompatibility tests demonstrated that CUPOMCs support cell adhesion and proliferation. Unlike the pre-polymers of other crosslinked elastomers, CUPOMC pre-polymers possess great processability demonstrated by scaffold fabrication via a thermally induced phase separation method. The dual crosslinking methods for CUPOMC pre-polymers should enhance the versatile processability of the CUPOMC used in various conditions. Development of CUPOMC should expand the choices of available biodegradable elastomers for various biomedical applications such as soft tissue engineering.


2011 ◽  
Vol 493-494 ◽  
pp. 826-831
Author(s):  
A.C.B.M. Fook ◽  
Thiago Bizerra Fideles ◽  
R.C. Barbosa ◽  
G.T.F.S. Furtado ◽  
G.Y.H. Sampaio ◽  
...  

The application of a hybrid composite consisting of biopolymer and calcium phosphate, similar morphology and properties of natural bone, may be a way to solve the problem of the fragility of ceramics without reducing its mechanical properties, retaining the properties of biocompatibility and high bioactivity. This work aims at the preparation and characterization of three-dimensional scaffolds composite HA / biopolymers (chitosan and gelatin). The freeze-drying technique was employed in this study to obtain these frameworks and partial results showed the effectiveness of this method. This involved the study of structural, chemical and morphological frameworks, in order to direct the research suggested the application. The X Ray Diffraction (XRD) and infrared spectroscopy and Fourier transform (FTIR) results confirmed the formation of hydroxyapatite (HA) phase and the presence of characteristic bands of HA and biopolymers in all compositions. The microstructure of the scaffolds study conducted by Scanning Electron Microscopy (SEM) revealed the formation of longitudinally oriented microchannels with interconnected pores. In all compositions the porous scaffolds showed varying sizes and mostly larger than 100μm, and is therefore considered materials with potential for application in bone tissue engineering.


2015 ◽  
Vol 213 ◽  
pp. e127 ◽  
Author(s):  
Yang Hu ◽  
Yu Yang ◽  
Meng Hu ◽  
Xiaoyu Gu ◽  
Chaoyang Wang

2011 ◽  
Vol 284-286 ◽  
pp. 459-463 ◽  
Author(s):  
Yuan Yuan Qi ◽  
Bin Liu ◽  
Xing Bin Yan

Nanofibrous scaffolds of PVA and HA were prepared by electrospinning. SEM showed the scaffolds had porous nanofibrous morphology, and the diameter of the fibers was in the range of 200-1000 nm. FTIR and XRD showed the presence of HA in the scaffolds. The mechanical properties of the scaffolds changed by the adding content of HA. For the nanoscaffolds with 2wt % HA, the ultimate tensile strength and the elongation at break was 7.5 MPa and 17%. The PVA/HA nanoscaffolds prepared by electrospinning indicated good properties, and had a potential applications in bone tissue engineering and drug delivery systems.


Sign in / Sign up

Export Citation Format

Share Document