scholarly journals Constituent Characteristics and Functional Properties of Passion Fruit Seed Extract

Life ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 38
Author(s):  
Shinpei Kawakami ◽  
Makoto Morinaga ◽  
Sakuka Tsukamoto-Sen ◽  
Sadao Mori ◽  
Yuko Matsui ◽  
...  

The genus Passiflora L. is widely cultivated in tropical and subtropical regions. The major species, Passiflora edulis Sims, is known as ‘passion fruit’ and is widely used in processed foods as well as eaten raw. P. edulis fruits are eaten for their pulp together with the seeds; however, the seeds are often discarded when used in processed foods. P. edulis seeds contain a variety of nutrients and functional components, and their industrial use is desirable from the perspective of waste reduction. Previous studies have analyzed the constituents of P. edulis and their physiological functions. P. edulis seeds contain various types of polyphenols, especially those rich in stilbenes (e.g., piceatannol). P. edulis seed extracts and isolated compounds from seeds have been reported to exhibit various physiological functions, such as antioxidant effects, improvement of skin condition, fat-burning promotion effects, and hypoglycemic effects. This review summarizes the nutritional characteristics, polyphenol content, and physiological functions of P. edulis seeds.

Author(s):  
Poornima Jeyasekaran ◽  
M. Deepa

Functional components are found abundantly in plants which are non-nutritive and bio active compounds that prevents the onset of degenerative diseases and protects the body by maintaining the health.  The objective of this study is to identify the chemical components of different varieties of passion fruit leaves (Passiflora edulis f. flavicarpa,Passifloraedulisf. edulis and Passiflora quadrangularis) available wildly in the hills of Tamil Nadu, India. Young tender passion fruit leaves can be used as a raw leafy green as they contain vitamin A and niacin. The dried leaves are used for calming teas and herbal remedies. The functional components were identified using Fourier Transform Infrared Spectroscopy FTIR(ATR) spectrophotometer. The leaves contain polyphenols, triterpenes, carotenoids, polysaccharides, amino acids and flavonoids which have a lot of beneficial effect on human health especially in preventing degenerative diseases. This paves way to use these amazing abundant greens in clinical studies as ayurvedic preparations and treat illness naturally.


2019 ◽  
Vol 13 ((03) 2019) ◽  
pp. 465-471 ◽  
Author(s):  
Edilândia Farias Dantas ◽  
Ana Dolores Santiago de Freitas ◽  
Maria do Carmo Catanho Pereira de Lyra ◽  
Carolina Etienne de Rosália e Silva Santos ◽  
Stella Jorge de Carvalho Neta ◽  
...  

Green manures can replace or supplement mineral fertilization and add organic matter to the soils, ensuring greater sustainability to fruit growing in semiarid regions. Biological fixation, transfer and balance of nitrogen were determined on an irrigated yellow passion fruit orchard (Passiflora edulis Sims) intercropped separately with three cover crops: sunn hemp, Crotalaria juncea (L.); pigeon pea, Cajanus cajan (L.) Mill; and jack bean, Canavalia ensiformis (L.) DC. In a fourth treatment, legumes were not planted, but spontaneous vegetation was left to grow freely. The legumes were croped for 90 days in three lines (0.5 m apart) inside the passion fruit plant lines (2.5 m apart). Fixation and transfers were determined by the 15N natural abundance technique, using sunflower as a reference plant. The three planted legumes nodulated abundantly and fixed nitrogen in high proportions (between 50 and 90% of their N), forming symbiosis with bacteria naturally established in the soil. Jack bean produced more biomass than sunn hemp and pigeon pea, and as much as the spontaneous plants, of which 23% were legumes. The amounts of fixed N (150, 43, 30 and 29 kg ha-1) were determined mainly by the biomass of legumes. More than 40% of the N of passion fruit plants came from the biological nitrogen fixation of the intercropped jack bean, which provided an amount of N higher than that exported in the fruits, generating a positive balance of more than 100 kg ha-1. Therefore, it is recommended to intercrop jack bean in irrigated passion fruit orchards.


Diversity ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 144
Author(s):  
Nohra Castillo Rodríguez ◽  
Xingbo Wu ◽  
María Isabel Chacón ◽  
Luz Marina Melgarejo ◽  
Matthew Wohlgemuth Blair

Orphan crops, which include many of the tropical fruit species used in the juice industry, lack genomic resources and breeding efforts. Typical of this dilemma is the lack of commercial cultivars of purple passion fruit, Passiflora edulis f. edulis, and of information on the genetic resources of its substantial semiwild gene pool. In this study, we develop single-nucleotide polymorphism (SNP) markers for the species and show that the genetic diversity of this fruit crop has been reduced because of selection for cultivated genotypes compared to the semiwild landraces in its center of diversity. A specific objective of the present study was to determine the genetic diversity of cultivars, genebank accession, and landraces through genotyping by sequencing (GBS) and to conduct molecular evaluation of a broad collection for the species P. edulis from a source country, Colombia. We included control genotypes of yellow passion fruit, P. edulis f. flavicarpa. The goal was to evaluate differences between fruit types and compare landraces and genebank accessions from in situ accessions collected from farmers. In total, 3820 SNPs were identified as informative for this diversity study. However, the majority distinguished yellow and purple passion fruit, with 966 SNPs useful in purple passion fruits alone. In the population structure analysis, purple passion fruits were very distinct from the yellow ones. The results for purple passion fruits alone showed reduced diversity for the commercial cultivars while highlighting the higher diversity found among landraces from wild or semi-wild conditions. These landraces had higher heterozygosity, polymorphism, and overall genetic diversity. The implications for genetics and breeding as well as evolution and ecology of purple passion fruits based on the extant landrace diversity are discussed with consideration of manual or pollinator-assisted hybridization of this species.


2013 ◽  
Vol 36 (5) ◽  
pp. 845-849 ◽  
Author(s):  
Hiroko Maruki-Uchida ◽  
Ikuko Kurita ◽  
Kenkichi Sugiyama ◽  
Masahiko Sai ◽  
Kazuhisa Maeda ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document