scholarly journals Inhibition of Mild Steel Corrosion by 4-benzyl-1-(4-oxo-4-phenylbutanoyl)thiosemicarbazide: Gravimetrical, Adsorption and Theoretical Studies

Lubricants ◽  
2021 ◽  
Vol 9 (9) ◽  
pp. 93
Author(s):  
Ahmed A. Alamiery ◽  
Wan Nor Roslam Wan Isahak ◽  
Mohd S. Takriff

Gravimetric measurements were applied to study the inhibitory effect of 4-benzyl-1-(4-oxo-4-phenylbutanoyl)thiosemicarbazide (BOT) on the corrosion of mild steel in 1.0 M HCl. BOT has a good inhibitory efficacy of 92.5 percent at 500 ppm, according to weight loss results. The effect of inhibitor concentration on the mild corrosion behavior of steel was investigated and it was discovered that the higher the inhibitor concentration, the higher the damping efficiency. The results confirm that BOT is an effective corrosion inhibitor for mild steel in the presence of 1.0 M HCl. Furthermore, the higher protection efficiency with increasing temperature and the free energy value showed that BOT molecules participate in both chemisorption (coordination bonds between the active sites of BOT molecules and d-orbital of iron atoms) and physisorption (through the physical interactions on the mild steel surface). The adsorption mechanism on the mild steel surface obeys the Langmuir adsorption isotherm model. Quantum chemical calculations based on the DFT calculations were conducted on BOT. DFT calculations indicated that the protective efficacy of the tested inhibitor increased with the increase in energy of HOMO. The theoretical findings revealed that the broadly stretched linked functional groups (carbonyl and thionyl) and heteroatoms (sulfur, nitrogen and oxygen) in the structure of tested inhibitor molecules are responsible for the significant inhibitive performance, due to possible bonding with Fe atoms on the mild steel surface by donating electrons to the d-orbitals of Fe atoms. Both experimental and theoretical findings in the current investigation are in excellent harmony.

2016 ◽  
Vol 5 (4) ◽  
pp. 247
Author(s):  
Shubha H Natarj ◽  
Venkatesha T Venkatarangaiah ◽  
Anantha N Subbarao

<div><p><em>The present work demonstrated that corrosion inhibition efficiency of electrochemically generated organic coat is remarkably effective than self-assembled monolayer (SAM) generated by dip coating technique. Perfluorooctanoic Acid (PFOA) is used to modify mild steel surface for effective protection. Infrared reflection absorption spectroscopy and contact angle measurements substantiate the modification of mild steel surface and its effect on surface hydrophobicity. A comparison between electrochemical properties of PFOA SAM generated by dip coat method (DC-PFOA) and PFOA coat generated by electrochemical method (EC-PFOA) is presented. Electrochemical measurements reveal that the corrosion protection efficiency of EC-PFOA (91%) is much superior to DC-PFOA (28%). </em></p></div>


Author(s):  
Fidelis Ebunta Abeng ◽  
Valentine Anadebe ◽  
Patience Yake Nkom ◽  
Enyinda Goodluck Kamalu ◽  
Kelechi J. Uwakwe

Interaction of metal surfaces with organic molecules has a significant role in corrosion inhibition of metals and alloys. More clarification, from both experimental and computa­tional view is needed in describing the application of inhibitors for protection of metal surfaces. In this study, the surface adsorption and corrosion inhibition behavior of metol­azone, a quinazoline derivative, on mild steel in 0.02, 0.04, 0.06, and 0.08 M HCl solutions were investigated. Weight loss, potentiodynamic polarization and electrochemical impe­dance spectroscopy techniques were used. The optimum inhibition efficiencies of 75, 82 and 83 % were found by these three techniques at the optimum inhibitor concentration of 500 mg/L and 303 K. Scanning electron microscopy (SEM) was used to confirm adsorption of quinazoline derivative on the surface of the mild steel. Computational simulations were additionally used to give insights into the interaction between quinazoline inhibitor and mild steel surface. Thermodynamic parameters of mild steel corrosion showed that quinazoline derivative functions as an effective anti-corrosive agent that slows down corrosion process. Potentiodynamic polarization results revealed a mixed-type inhibitor, while the result of the adsorption study suggests that adsorption of the inhibitor on the mild steel surface obeys the physical adsorption mechanism and follows Langmuir adsorption isotherm model.  


Author(s):  
Inemesit A. Akpan ◽  
Okon U. Abakedi ◽  
Mfon A. James

Telfairia occidentalis rind extract has been studied as a potential green inhibitor for mild steel corrosion in 1 M H2SO4 using weight loss and hydrogen evolution methods. The results of the investigation reveal that Telfairia occidentalis rind extract is a good inhibitor of mild steel corrosion in sulphuric acid solution. The inhibition efficiency increases with increase in rind extract concentration but decreases with increase in temperature. The calculated thermodynamic parameters reveal that the corrosion inhibition process was endothermic and spontaneous. Physical adsorption has been proposed for the adsorption of Telfairia occidentalis rind extract onto mild steel surface. The adsorption of the extract on mild steel surface obeys the Langmuir adsorption isotherm. 


Author(s):  
T. Nesane ◽  
S.S. Mnyakeni-Moleele ◽  
L.C. Murulana

SYNOPSIS The effectiveness of two synthesized ionic liquids, 1-(benzyloxy)-1-oxopropan-2-aminium 4-methylbenzenesulfonate (1-BOPAMS) and 4-(benzyloxy)-4-oxobutan-1-aminium 4-methylbenzenesulfonate (4-BOBAMS), were evaluated for mild steel corrosion inhibition in 1.0 M hydro-chloric acid solution, using electrochemical impedance spectroscopy (EIS), potentiodynamic polarization (PDP), and gravimetric techniques. Organic moieties responsible for the adsorption process on mild steel surface were investigated using Fourier transform infrared spectroscopy (FTIR). Gravimetric analysis revealed that the inhibition efficiency of 1-BOPAMS and 4-BOBAMS increased with concentration, with maximum inhibition values of 90.32% and 97.91%, respectively, at the highest concentration of the inhibitors. Gibbs free energy (nG°ads) values indicated a strong interaction between the mild steel surface and the molecules of the ionic liquids, and that the adsorption process was spontaneous. These values also show that the inhibitive nature of ionic liquids against mild steel corrosion is caused by a mixedtype of adsorption film formed on the steel surface. The Langmuir adsorption isotherm was used to describe the adsorption of ionic liquid molecules onto the mild steel surface. Polarization curves showed that 1-BOPAMS and 4-BOBAMS have a similar effect on both the anodic and cathodic half-reactions, indicating that they prevent the dissolution of mild steel through both physical and chemical process. Nyquist plots were defined by incomplete semicircle capacitive loops, showing that the charge transfer mechanism controls the corrosion of mild steel in acidic solution. Keywords: corrosion inhibition, ionic liquids, mild steel, adsorption isotherm.


2010 ◽  
Vol 7 (4) ◽  
pp. 1284-1289 ◽  
Author(s):  
P. Matheswaran ◽  
A. K. Ramasamy

Corrosion behavior of mild steel in acidic medium usingAdhatoda Vasica(AV) extract was investigated. The inhibitive effective ofAdhatoda Vasicaon the corrosion of mild steel in different acidic medium has been studied by weight loss and polarization methods. The Ecorrvalues are shifted slightly towards negative side in presence of inhibitors which indicate the inhibitors inhibit the corrosion of mild steel in acids solution by controlling both anodic and cathodic reactions due to the blocking of active sites on the metal surface. It is evident that inhibitors bring about considerable polarization of the cathode as well as anode. It was, therefore, inferred that the inhibitive action is of mixed type.


RSC Advances ◽  
2019 ◽  
Vol 9 (70) ◽  
pp. 40997-41009 ◽  
Author(s):  
Dongyi Li ◽  
Panpan Zhang ◽  
Xinyu Guo ◽  
Xiaowei Zhao ◽  
Ying Xu

The inhibitory effect of radish leaf extract (RLE) on mild steel corrosion in 0.5 M H2SO4 was studied by the weight loss method and the electrochemical method.


2021 ◽  
Vol 11 (2) ◽  
pp. 3509-3512

The temperature effect of 4-ethyl-1-(4-oxo-4-phenylbutanoyl)thiosemicarbazide (EOPT) on the mild steel corrosion in 1 M HCl solution was studied by gravimetric techniques at temperatures varying from 303 to 333 K. The investigated inhibitor concentrations were started from 100 ppm and ended with 500 ppm. The inhibition efficiency increased with the increase of the concentration of the inhibitor and reached 96.1% with the concentration of 500 ppm at 303 K and decreased to 66.3% at 333 K. Moreover, the inhibition efficiencies decreased with the temperature increase for both acids. Using the Langmuir adsorption isotherm for the adsorption of this inhibitor on the mild steel surface was determined. EOPT was found to be an efficient corrosion inhibitor due to its structural molecules, which contain sulfur, nitrogen, and oxygen, hetero atoms an addition to the aromatic ring.


2019 ◽  
Vol 30 (1) ◽  
pp. 14-20
Author(s):  
Habibat F. Chahul ◽  
David T. Orhemba ◽  
Taiwo A. Gbadamosi

Abstract The inhibition of mild steel corrosion in 1.0 M HCl and 0.5 M H2SO4 by Cissus populnea stem extract was investigated using weight loss measurements in the temperature range of 303 – 333 K. Results from the study revealed that Cissus populnea stem extract inhibited the corrosion of mild steel in both acid media. Inhibition efficiency of the stem extract increased with increase in the extract concentration but decreased with immersion time. The kinetics of the reaction aligned with a first order type. Thermodynamics investigations showed that Cissus populnea extract is adsorbed on the steel surface through physical interactions, and the adsorption process was endothermic and spontaneous. Langmuir, Freundlich and Temkin isotherm models best described the adsorption mechanism of the stem extract on the steel surface.


2020 ◽  
Vol 2020 ◽  
pp. 1-10 ◽  
Author(s):  
Aouatife Zaher ◽  
Abdelkarim Chaouiki ◽  
Rachid Salghi ◽  
Asmaa Boukhraz ◽  
Brahim Bourkhiss ◽  
...  

The chemical composition of the methanolic extract of Ammi visnaga (Khella) seeds from the Sidi Slimane region is determined for the first time by Gas Chromatography coupled with Mass Spectrometry (GC/MS). Ten compounds representing 99.638% of the total extract were identified. Khellin (49.011%), Visnagin (26.537%) and Dimethylethylamine (15.108%) are the major components. Moreover, the inhibitory effect of the Methanolic extract of the seeds of Ammi visnaga on the corrosion of mild steel in a solution of 1M HCl is determined using weight loss measurements, the potentiodynamic technique as well as the technique of electrochemical impedance spectroscopy (EIS). It is found that the extract reduces the corrosion rate of the steel in the acid solution. Inhibition efficiency increases as the concentration of the extract increases. The tested compound has an inhibition efficiency of 84% for a concentration equal to 1.0 g/L. The polarization measurements indicate that the examined extract acts as a mixed inhibitor with predominant anodic efficacy. The data obtained from EIS studies are analyzed to model this process using appropriate equivalent circuit models. The adsorption of the extract on the surface of the mild steel obeys the Langmuir adsorption isotherm in acidic medium and the activation is determined and discussed.


Sign in / Sign up

Export Citation Format

Share Document