scholarly journals Wear Behaviours and Oxidation Effects on Different UHMWPE Acetabular Cups Using a Hip Joint Simulator

Materials ◽  
2018 ◽  
Vol 11 (3) ◽  
pp. 433 ◽  
Author(s):  
Saverio Affatato ◽  
Alessandro Ruggiero ◽  
Sami Jaber ◽  
Massimiliano Merola ◽  
Pierangiola Bracco
2016 ◽  
Vol 68 (5) ◽  
pp. 548-553 ◽  
Author(s):  
Guomei Chen ◽  
Zifeng Ni ◽  
Shanhua Qian ◽  
Yongwu Zhao

Purpose The purposes of this paper are to investigate the biotribological behaviour of Vitamin E-blended highly cross-linked ultra-high molecular weight polyethylene (HXL-UHMWPE) under multi-directional motion by using a CUMT II artificial joint hip simulator and compare it with HXL-UHMWPE and conventional UHMWPE. Design/methodology/approach The biotribological behaviour of conventional, highly cross-linked and Vitamin E-blended highly cross-linked UHMWPE acetabular cups counterfaced with CoCrMo alloy femoral head under multi-directional motion were investigated by using CUMT-II artificial hip joint simulator for one-million walking cycles. The test environment was at 36.5 ± 0.5°C and 25 per cent bovine serum was used as lubricant. A Paul cycle load with a peak of 784 N was applied; the motion and loading were synchronized at 1 Hz. Findings The wear resistance of Vitamin E-blended highly cross-linked UHMWPE was significantly higher than that of highly cross-linked and conventional UHMWPE. The wear marks observed from the worn surface of UHMWPE were multi-directional, with no dominant wear direction. Only abrasion occurred on the surface of Vitamin E-blended highly cross-linked UHMWPE, while yielding and accumulated plastic flow processes occurred on the surface of conventional UHMWPE and flaking-like facture and abrasion occurred on the surface of highly cross-linked UHMWPE. Originality/value Besides the prevention of oxidative degradation, blending with Vitamin E can also reduce the incidence of fatigue crack occurred in the surface layer of HXL-UHMWPE samples. Therefore, the wear resistance of HXL-UHMWPE under multi-directional motion can be further enhanced by blending with Vitamin E.


2008 ◽  
Vol 131 (1) ◽  
Author(s):  
Vesa Saikko

The established biaxial rocking motion (BRM) hip joint simulator was complemented by a novel friction measurement accessory. This simple and practical system, which was easily added to an existing BRM design, is described in detail and shown to perform well in long-term wear tests and in comparative tests of 24 h duration involving several different bearing couples. The system was based on the measurement of frictional torque about the leaning axis of the lower component, the femoral head. In the 28 mm CoCr-on-ultrahigh molecular weight polyethylene articulation with diluted calf serum lubricant at body temperature and 1 kN static load, the maximum value of frictional torque during a cycle was 1.2 N m on the average. The alternative system based on the measurement of torque about the vertical loading axis was shown to be less sensitive and highly insensitive when contact area was small, as was the case with alumina-on-alumina.


Sign in / Sign up

Export Citation Format

Share Document