scholarly journals Microstructure Evolution and Flow Stress Model of a 20Mn5 Hollow Steel Ingot during Hot Compression

Materials ◽  
2018 ◽  
Vol 11 (4) ◽  
pp. 463
Author(s):  
◽  
◽  
2014 ◽  
Vol 31 (5) ◽  
pp. 923-938 ◽  
Author(s):  
Jun Chen ◽  
Jin Wang

Purpose – The purpose of this paper is to build a flow stress model and microstructure evolution models which can be used to fulfill the multi-physics prediction of hot forging process, in this way the process design can be virtually verified and optimized. This is especially crucial for micro-alloyed steel forging which microstructure determines the component properties, since the downstream quenching is usually not needed. Design/methodology/approach – First, hot compression tests have been completed; second, experimental data are used to build the flow stress model and models for microstructure evolution; third, programming has been finished to integrate the proposed models into the commercial finite element method (FEM) code; fourth, case study is conducted to simulate multi-stage hot forging process of micro-alloyed steel F38MnV piston; and fifth, simulation results are validated by experiment. Findings – First, simulation results in grain size and phase volume fraction are in well agreement with experimental ones; second, the austenite grain is dramatically refined by the dynamic recrystallization in pre-forging process and static recrystallization in the two intervals has no obvious change during the following final forging and cooling above the Ae3 temperature; third, during the cooling process below the Ae3 temperature, ferrite and pearlite transformation begin from the thin skirt to the thick skirt and piston bottom because of different cooling speeds at different areas. Originality/value – First, flow stress model, dynamic recrystallization model, static recrystallization model, austenite grain growth model and phase transformation models are established for a micro-alloyed steel; second, the multi-physics FEM simulation of multi-stage hot forging of industrial piston has been conducted and verified by experiment, which show good agreement.


2012 ◽  
Vol 446-449 ◽  
pp. 3591-3595
Author(s):  
Xu Dong Zhou ◽  
Xiang Ru Liu ◽  
Xu Yi Shan

2020 ◽  
Vol 831 ◽  
pp. 25-31
Author(s):  
Pan Fei Fan ◽  
Jian Sheng Liu ◽  
Hong Ping An ◽  
Li Li Liu

In order to obtain the high temperature flow behavior of as-cast SA508-3 low alloy steel, the stress-strain curves of steel are obtained by Gleeble thermal simulation compression test at deformation temperature 800°C-1200°C and strain rate 0.001s-1-1s-1. Based on Laasraoui two-stage flow stress model, a high temperature flow stress model is established by multiple linear regression method. The results show that the peak stress characteristics are not obvious at low temperature and high strain rate, which is a typical dynamic recovery characteristic. Meanwhile, the peak stress characteristics are obvious at high temperature and low strain rate, which is a typical dynamic recrystallization characteristic. By means of the comparisons between experiments and calculations, the Laasraoui two-stage flow stress model can truly reflect flow behavior of steel at high temperature, which provides theoretical guidance for the hot deformation of the steel.


2007 ◽  
Vol 14 (5) ◽  
pp. 355-358
Author(s):  
Li-min WANG ◽  
Ning LIU ◽  
Li-qing CHEN ◽  
Xiang-hua LIU ◽  
Zheng-dong LIU ◽  
...  

2019 ◽  
Vol 797 ◽  
pp. 735-743 ◽  
Author(s):  
Lianpeng Su ◽  
Hanyuan Liu ◽  
Lei Jing ◽  
Zhentao Yu ◽  
Wenxian Wang ◽  
...  

Materials ◽  
2019 ◽  
Vol 12 (4) ◽  
pp. 609 ◽  
Author(s):  
Mohanraj Murugesan ◽  
Dong Jung

Consistent and reasonable characterization of the material behavior under the coupled effects of strain, strain rate and temperature on the material flow stress is remarkably crucial in order to design as well as optimize the process parameters in the metal forming industrial practice. The objective of this work was to formulate an appropriate flow stress model to characterize the flow behavior of AISI-1045 medium carbon steel over a practical range of deformation temperatures (650–950 ∘ C) and strain rates (0.05–1.0 s − 1 ). Subsequently, the Johnson-Cook flow stress model was adopted for modeling and predicting the material flow behavior at elevated temperatures. Furthermore, surrogate models were developed based on the constitutive relations, and the model constants were estimated using the experimental results. As a result, the constitutive flow stress model was formed and the constructed model was examined systematically against experimental data by both numerical and graphical validations. In addition, to predict the material damage behavior, the failure model proposed by Johnson and Cook was used, and to determine the model parameters, seven different specimens, including flat, smooth round bars and pre-notched specimens, were tested at room temperature under quasi strain rate conditions. From the results, it can be seen that the developed model over predicts the material behavior at a low temperature for all strain rates. However, overall, the developed model can produce a fairly accurate and precise estimation of flow behavior with good correlation to the experimental data under high temperature conditions. Furthermore, the damage model parameters estimated in this research can be used to model the metal forming simulations, and valuable prediction results for the work material can be achieved.


Sign in / Sign up

Export Citation Format

Share Document