scholarly journals Influence of Magnetic Nanoparticles on the Focused Ultrasound Hyperthermia

Materials ◽  
2018 ◽  
Vol 11 (9) ◽  
pp. 1607 ◽  
Author(s):  
Katarzyna Kaczmarek ◽  
Tomasz Hornowski ◽  
Bernadeta Dobosz ◽  
Arkadiusz Józefczak

Ultrasound hyperthermia is a medical treatment used to increase temperature of tissues. It can be used independently or as a supportive method for an anticancer treatment. The therapeutic efficacy of focused ultrasound hyperthermia can be improved using sonosensitizers, nanoparticles enhancing the attenuation and dissipation of acoustic energy. As sonosensitizers, we propose magnetic nanoparticles owing to their biodegradability, biocompatibility, and simple positioning in tissues using a magnetic field. Focused ultrasound hyperthermia studies were performed using tissue-mimicking phantoms. Temperature changes were measured at various ultrasound powers and distances from the center of the ultrasound focus. Specific absorption rate (SAR) values, describing the power deposition in the tissues during the hyperthermia treatment, were evaluated for the center of the focus point and for various distances from it. The results show that the addition of nanoparticles increases the SAR almost two times compared to that for the pure phantom. The highest SAR is obtained in the ultrasound focus; it decreases with the increase of the distance from the focus.

Nano LIFE ◽  
2015 ◽  
Vol 05 (02) ◽  
pp. 1550002 ◽  
Author(s):  
K. Kekalo ◽  
I. Baker ◽  
R. Meyers ◽  
J. Shyong

This paper describes the synthesis and properties of a new type of magnetic nanoparticle (MNP) for use in the hyperthermia treatment of tumors. These particles consist of 2–4 nm crystals of gamma- Fe 2 O 3 gathered in 20–40 nm aggregates with a coating of carboxymethyl-dextran, producing a zetasize of 110–120 nm. Despite their very low saturation magnetization (1.5–6.5 emu/g), the specific absorption rate (SAR) of the nanoparticles is 22–200 W/g at applied alternating magnetic field (AMF) with strengths of 100–500 Oe at a frequency of 160 kHz.


NANO ◽  
2020 ◽  
Vol 15 (01) ◽  
pp. 2050015
Author(s):  
Lihan zheng ◽  
Yuanwei Chen ◽  
Ying Wang ◽  
Peng Wang ◽  
Tao Wang

Self-regulating temperature hyperthermia based on magnetic fluid with low Curie temperature is a moderately effective method for cancer treatment. The improvement of the properties of magnetic fluids is the key for application of this method. In this paper, Bi-doped LSMO magnetic nanoparticles were synthesized using a simple sol–gel method and coated by hyaluronic acid through high energy ball milling for their possible application in self-regulating temperature hyperthermia. The crystal structure, morphology, basic magnetic properties and heating properties of these nanoparticles in a high frequency magnetic field were investigated. It was found that the hyaluronic acid-coated La[Formula: see text]Sr[Formula: see text]Bi[Formula: see text]MnO3 magnetic nanoparticles, with an average particle diameter of [Formula: see text]100[Formula: see text]nm and a Curie temperature of 48∘C, possess outstanding induction heating properties. The saturation heating temperature, specific absorption rate and effective specific absorption rate are 48∘C, 117[Formula: see text]W/g and 0.27[Formula: see text]W/g[Formula: see text]kHz[Formula: see text](kA/m2), respectively.


2019 ◽  
Vol 21 (34) ◽  
pp. 18741-18752
Author(s):  
Matteo Avolio ◽  
Helena Gavilán ◽  
Eva Mazario ◽  
Francesca Brero ◽  
Paolo Arosio ◽  
...  

High aspect-ratio elongated nanoparticles with suitable porosity present partially controlled chemico-physical properties to obtain good heating/contrast efficiency for biomedical applications.


Sign in / Sign up

Export Citation Format

Share Document